Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден карбиды

    Цезиевый термоионный конвертор (см. рис. 8) является цезиевым паровым вакуум-диодом, работа которого заключается в следующем. Пары цезия при давлении около 1 мм рт. ст. ионизируются либо термически, либо при соприкосновении с горячим катодом (вольфрам, тантал, молибден, карбиды циркония, тория или урана и т. д.). Образовавшиеся электроны попадают на анод (медь, никель, молибден или цирконий) и создают определенную разность потенциалов, снимаемую с выходных контактов конвертора. Для изоляции анода От катода используется керамика из трехокиси алю.миния [23, 47]. [c.78]


    Молибден карбид МогС 2613210061 [c.322]

    Карбиды ШС и МоС очень тверды, их частицы находятся в. инструментальных сталях, содержащих вольфрам и молибден. Из этих сталей изготавливают резцы, сверла и др. [c.541]

    Хром в значительном количестве поглощает водород с образованием твердых растворов, более хрупких по сравнению с чистым хромом. Молибден и вольфрам заметно поглощают водород только при температурах выше ]200°С, а при охлаждении поглощенный водород выделяется из образовавшихся твердых растворов. С углеродом металлы группы хрома взаимодействуют при высоких температурах с образованием карбидов различного состава. Подобным же образом металлы взаимодействуют с кремнием и бором. [c.282]

    Хром, титан, молибден и другие элементы, образуя сложные карбиды, повышают сопротивляемость стали обезуглероживанию. [c.460]

    В последние годы применяют новые высокопроизводительные процессы металлизации с применением низкотемпературной плазмы. В плазменном потоке можно наносить различные тугоплавкие металлы вольфрам, молибден, титан, ванадий и др., а также окислы, нитриды, карбиды, бориды, которые другими способами нанести нельзя. В промышленном масштабе получил [c.78]

    По материалу матрицы композиты делятся на три группы металлические, керамические и органические. Композиционные материалы с керамической матрицей или керметы синтезируют методом порошковой металлургии на основе тугоплавких оксидов, боридов, карбидов и нитридов различных элементов и содержат такие тугоплавкие металлы как хром, молибден, вольфрам, тантал. [c.327]

    Зона внутреннего конуса благоприятна для наблюдений атомной абсорбции элементов, образующих термостойкие оксиды и гидроксиды (например, алюминий, молибден и т. п,). Элементы, образующие в пламени карбиды (кремний вольфрам ванадий и т. п.), почти всегда образуют и термостойкие оксиды. Однако образование карбидов является относительно медленным процессом. Поэтому наблюдение атомной абсорбции таких элементов целесообразно проводить в верхней половине внутреннего конуса. [c.146]

    Основным легирующим элементом, повышающим стойкость металла к коррозии, является хром. При нормальных условиях его присутствие придает металлу стойкость к коррозии от влаги. При повышенных температурах хром придает металлу стойкость к коррозии, вызываемой газовыми агрессивными потоками. Она имеет место в трубах печей, реакторах, теплообменниках нагрева сырья со стороны газопродуктового потока. С ростом содержания хрома стойкость к коррозии увеличивается особой стойкостью обладают хромоникелевые сплавы. Из других добавок очень хорошо проявляет себя молибден. Однако характерным недостатком хромоникелевых сплавов является их склонность к межкристаллит-ной коррозии, при которой процесс разрушения развивается не на поверхности, а по границам кристаллов. Теория это объясняет образованием карбидов хрома при длительном нафевании сплавов выше 350°С. При этом участки, прилегающие к границам зерен или кристаллов, обедняются хромом и теряют свою коррозионную стойкость. Наиболее уязвимы для межкристаллитной коррозии сварные швы. [c.169]


    Основная часть Т. расходуется на приготовление сплавов повышенной прочности для нужд авиационной и ракетной техники и морского судостроения. Т. используют как легирующий металл, для изготовления химической аппаратуры, в гидрометаллургии никеля и кобальта, в радиоэлектронике, в качестве геттера (поглотитель газов). Перспективным является применение Т. в производстве красителей, в бумажной и других промышленностях. В большинстве случаев Т. применяют в виде сплавов с алюминием, молибденом, ванадием, марганцем и т. п. или же в виде нитрида, карбида, силицидов, боридов и др. Важное значение имеют соединения Т. (см. Титана соединения). [c.251]

    Карбиды при получении образуют марганец, хром, титан, молибден, вольфрам и др. [c.143]

    Уран, протактиний и торий отличаются от своих аналогов по химическим свойствам. Уран, в противоположность хрому, молибдену и вольфраму, не образует карбонильных соединений, а его карбид легко гидролизуется водой (карбиды хрома, молибдена и вольфрама представляют собой твердые сплавы, химически инертные). В отличие от титана, циркония и гафния торий образует легко гидролизующийся карбид, нитрид и гидрид. Уран не встречается в природе вместе с молибденом и вольфрамом, а сопровождается обычно торием и лантаноидами торий в свою очередь содержится [c.285]

    Металлотермией обычно получают те металлы (и их сплавы), которые при восстановлении оксидов углем образуют карбиды. Это — марганец, хром, титан, молибден, вольфрам и др. [c.232]

    Молибден также образует ряд карбидов, но наиболее устойчивы МогС и МоС. Аналогичные соединения образует и вольфрам и УС. Карбиды молибдена и вольфрама очень тверды и тугоплавки. Наибольшее применение имеют карбиды вольфрама из них ШС почти не уступает по твердости алмазу и немного превосходит карбид титана ТЮ. [c.363]

    При высоких температурах графит раскисляет почти все окислы металлов. С железом, вольфрамом, молибденом, ураном, титаном, бором и кремнием он образует карбиды медь, серебро, свинец, олово и сурьма не способны давать с ним карбиды. [c.43]

    Молибден Образование карбидов выше 1100°С полное науглероживание при 1300—1400 °С [c.41]

    Молибден образует с углеродом несколько карбидов. Растворимость углерода в молибдене в твердом состоянии, по данным различных исследователей, составляет 0,1—0,3%. [c.74]

    Можно с достаточной достоверностью утверждать, что в исследованных пределах содержания молибден увеличивает растворимость углерода в аустените и способствует образованию карбидов. [c.75]

    Основывается в основном на фактах межкристаллитного характера разрушения коррозионностойких сталей в средах окислительного и сильноокислительного характера, например в НКОз, НЫОа + Сг " , а также при испытании некоторых сталей по методу ВУ ГОСТ 6032—84. Как правило, такой характер разрушения наблюдается при образовании фаз, содержащих молибден (карбидов, а-фазы, Х фазы и др.). Эта теория не имеет универсального характера и может быть применена для объяснения МКК для ограниченного числа сред и композиций стали. [c.55]

    Молибден. Молибден усиливает способность хромоникелевых сталей к самопассивации и существенно повышает их стойкость в неокислительных и слабоокислительных средах. В окислительных и сильноокислительных средах скорость коррозии молибдена и богатых им фаз велика [1.31 ]. В окислительных средах молибден ухудшает стойкость против МКК отпущенных сталей в результате образования обогащенных молибденом карбидов, [c.59]

    Композиционные материалы состоят из основы (матрицы) и добавок (порошков, волокон, стружки и т.д.). в качестве основы применяют металлы, полимеры, керамику и другие материалы. Если основой служат металлы, то добавками являются металлические нитевидные кристаллы, неорганические волокна и порошки (оксиды алюминия, кварц, алюмосиликаты и др.). Композиты, матрицей которых служит керамика, а добавками — металлы, называются керамикометаллическими материалами или керметами. В качестве матрицы керметов обычно применяют оксиды алюминия, хрома, магния, циркония, карбиды вольфрама, кобальта, бориды циркония и хрома. Добавками могут служить металлы, сродство которых соответственно к кислороду, углероду, бору меньше, чем сродство к этим элементам металлов основы. Наиболее распространены сочетания оксидов алюминия с молибденом, вольфрамом, танталом, никелем, кобальтом, оксида хрома с вольфрамом, оксида магния с никелем, диоксида циркония с молибденом, карбидов титана и хрома с никелем и кобальтом. [c.356]

    Еще одним типом никелевого сплава, при использовании которого можно столкнуться с проблемой межкристаллитной коррозии, является сплав системы N1—Сг—Мо, содержащий около 15% Сг и около 15% Мо. В сплавах этого типа природа межзеренных фаз, приводящих к межкристаллитной коррозии, более сложна, чем в случае сплавов системы N1—Сг—Ре, и при нежелательных термообработках могут образовываться не только карбиды, но и по крайней мере одна интерметаллическая фаза. Это явление широко исследовалось в последние годы [48—53], но полученные результаты противоречивы в том, что касается природы межзеренных фаз, ответственных за чувствительность материала к межкристаллитной коррозии. Представляется вполне достоверным, что для сплавов данного типа основные причины заключаются в наличии примыкающих к межзеренным границам областей, обедненных молибденом, а возможно также и хромом, и присутствие на границах зерен фаз, богатых молибденом (и хромом). Основной обогащенной молибденом фазой является интерметаллическое соединение, кристаллическая структура которого аналогична, по-видимому, структуре РеуМОб [51, 53], но могут возникать и богатые молибденом карбиды типа Ме С. Вполне вероятно, что в сплавах N1— Сг—Мо могут действовать два различных механизма межкристаллитной коррозии. Первый вызывает коррозию обедненных зон, что наблюдается в соляной кислоте (и, возможно, имеет место в других кислых растворах выделяющих водород). Второй механизм приводит к преимущественному разрушению интерметаллических фаз. [c.146]


    Во избежание обгорания труб обслуживающий персонал должен соблюдать правила эксплуатации горелок, не допускать опасного приближения факела к трубчатому змеевику. Наружное обгорание металла (сталь 15Х5М) наблюдается при паровоздушном способе удаления кокса из печных труб, особенно при недопустимом их перегреве (свыше 680 °С). Поэтому необходим строгий контроль температуры нагрева стенок труб. Практика работы нефтеперерабатывающих заводов показала, что при выжигах кокса наблюдались случаи значительного превышения предельно допускаемой температуры стенок труб, что снижало прочность трубчатых змеевиков и их работоспособность. Указанное снижение длительной прочности стали объясняется сфероидизацией карбидной фазы и обеднением молибденом твердого раствора из-за перехода его в карбиды. [c.153]

    Использование кобальта в технике. Кобальт используется как легирующий металл в сталях, придавая им особые свойства (стали нержавеющие, инструментальные, с особыми магнитными свой-стками). Кобальт также является основой жаропрочных сплавов, леп ,юваниь х титаном, хромом, молибденом и другими металлами, Большое количество кобальта иснользуется в производстве сверхтвердых материалов на основе карбидов титана и вольфрама. [c.315]

    Одним из основных путей повышения водородоустойчивостн сталей является введение в нее сильных карбидообразующих элементов. Легирование стали хромом, молибденом, вольфрамом, ванадием, ниобием, титаном резко повышает ее сопротивление водородной коррозии. Эго происходит благодаря образованию карбидов более стабильных, чем цементит. На разрезе диаграммы Ре—С—Сг (рис. 4.4в) нанесены результаты испытаний по водородостойкости ряда хромистых сталей. Из сопоставления диаграммы и рис. 4.49 следует, что увеличение содержания хрома резко повышает водородоустойчивость. [c.256]

    Для борьбы с водородной коррозией встальдобавляютхром, молибден, титан, ванадий, карбиды металлов, которые значительно устойчивее к воздействию атомарного водорода. [c.170]

    Большие потенции таятся в плазмохимической технологии производства мелкодисперсных порошков — основного сырья для порошковой металлургии, в восстановлении металлов, синтезе оксидов, карбидов, силицидов, нитридов, карбонитридов, боридов таких металлов, как титан, цирконий, ванадий, ниобий, молибден [13]. Все эти соединения являются сверхтвердыми и жаропрочными материалами, столь необходимыми для современного машиностроения. Уже разработана технология синтеза монооксидов (ЭО) элементов, обычно встречаюпщхся лишь в составе диоксидов ЭОг), например монооксида кремния (510), обладающего ценнейшими электрофизическими свойствами. И несмотря на то, что плазмохимические процессы в таких синтезах характеризуются высокими энергетическими параметрами (7ж5000—6000 К тепловой поток до 5—7 МВт иа 1 см ), процессы эти отличаются не только исключительно высокими скоростями, но и относительно низкими удельными энергетическими затратами — всего лишь около 1—2 кВт-ч/кг Таким образом, химия высоких энергий направлена на экономию энергии. [c.235]

    Молибден также образует ряд карбидов, из которых наиболее важными являются М02С и МоС. Последний при высоких температу- [c.109]

    В современном машиностроении хром, молибден и вольфрам полу чили очень широкое применение как легирующие компоненты сталей никелевых и медных сплавов. Появились сплавы на основе молибде на и вольфрама для деталей, работающих при высоких температурах Применяют также чистые металлы и их соединения (карбиды). В ма шиностроительной технологии используются оксиды и соли этих ме таллов. [c.112]

    Металлы VIB группы находят широкое применение в промыш ленности для производства специальных марок сталей и сплавов Вольфрам является незаменимым материалом в электротехни ческой промышленности для изготовления нитей накаливания Карбиды хрома и вольфрама обладают высокой твердостью и при меняются для изготовления металлообрабатывающего инструмен та. Молибден является микроэлементом-стимулятором роста ра стений. Соединения Сг (III) широко используются для производ ства минеральных и акварельных красок (СггОз, Pb rOi и др.). [c.526]

    Восстановительная активность этих металлов растет с уменьшением порядкового номера. Однако, благодаря устойчивой оксидной пленке, только хром является пассивным металлом в широком интервале температур. Молибден и вольфрам начинают окисляться на воздухе при 250—400° С. При 500° С быстро образуется желтого цвета оксид WO3, а при 600°—М0О3. Оксиды летучи (особенно МоОд), пленки их на металлах незащитные. Использование изделий из этих металлов при высокой температуре требует создания водородной или инертной среды. Хром окисляется при нагревании только в виде порошка. Сплавы железа с хромом (и никелем) нержавеющие. Молибден и вольфрам поглощают водород только при 1200° С и выше, а при охлаждении его содержание в металлах уменьшается. Хром с водородом образует неустойчивые гидриды СгН и СгНз, разлагающиеся при нагревании. Эги металлы не реагируют со ртутью и не образуют амальгам. При нагревании с углеродом и углеводородами до 1200— 1400°С образуются карбиды W2 , W , Moj , МоС (являющиеся фазами переменного состава) и различные карбиды хрома. Все три металла образуют силициды, бориды, сульфиды, фосфиды, нитриды различного состава. Нитриды весьма тверды, но не очень химически устойчивы, кар.1иды же в обычных условиях довольно устойчивы. [c.336]

    Содержание углерода в карбидах определяют сжиганием их в кислороде. Молибден образует два карбида. При сжигании одного из них массой 1,4040 г и другого массой 2,6520 г образуется СО2 одного и того же объема 0,2912 л (н. у.). Найдите формулы этих карбидов. Ответ МоС и МоаС. [c.34]

    В руднотермических (рудовосстановительных) печах проводят восстановительные электротермические процессы, с помощью которых получают чистые металлы или сплавы металлов из руд, содержащих эти металлы в виде окислов или сернистых соединений. Так, из FeO получают чугун (процесс, аналогичный доменному), из МпО — марганец, из SiOa — кремний, из МоОз — молибден, из СаО (извести)—карбид кальция СаСг и т.д. [c.211]

    При длительном взаимодействии графита с различными металлами ниже их точки плавления также могут образовываться карбиды. Так, никель не реагирует с графитом до 1010 °С, но при длительном контакте и в особенности при циклических нагревах могут образовываться карбиды, которые нестабильны и распадаются при температурах ниже 430 °С. Молибден и ниобий реагируют с графитом с образованием карбидов, которые образуют защитные слои молибден образует карбид состава М02С в интервале температур 650-980 °С, а ниобий - карбиды состава МЬС и N6 0 при температуре ниже 815 °С. Цирконий науглероживается при 750 °С. С ураном графит образует карбид состава иС, а при 1400°С — иС , присутствие которого может быть обнаружено металлографически. [c.131]

    Марганец, хром, вольфрам, молибден, ванадий, титан, ниобии, циркощи и другие элементы являются карбидообразующими, соединяясь с углеродом, они образуют специальные (простые) или сложные карбиды. [c.15]

    Карбиды молибдена Мо С и МоС можно по.лучпть , пасыщая углеродом порошкообразный свежевосстановленный молибден. В качестве источника уг.лерода берут окпсь углерода пли метан. [c.308]


Смотреть страницы где упоминается термин Молибден карбиды: [c.329]    [c.120]    [c.146]    [c.265]    [c.151]    [c.277]    [c.63]    [c.418]   
Руководство по неорганическому синтезу (1965) -- [ c.308 ]

Химический энциклопедический словарь (1983) -- [ c.351 ]

Общая и неорганическая химия (1981) -- [ c.388 , c.542 ]

Неорганическая химия Том 2 (1972) -- [ c.333 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.534 ]




ПОИСК





Смотрите так же термины и статьи:

Карбид молибдена средах

Карбид молибдена удельное

Карбид молибдена электросопротивления

Карбид молибдена элементов

Молибден карбид, температура перехода

Молибдена сплавы, электролитическое выделение карбидов



© 2025 chem21.info Реклама на сайте