Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плазмохимические процессы

    Эффективным способом воздействия на вещество является использование лазерного излучения. Важным его свойством является излучение мощных потоков световой энергии в узких интервалах, что позволяет осуществлять реакции избирательно. Используя лазерное излучение определенной длины волны, можно направить в нужном направлении химический процесс. Лазерное излучение может быть с успехом использовано для инициирования высокотемпературных и плазмохимических процессов, испарения и разложения нелетучих веществ, качественного и количественного анализа веществ, исследования механизмов химических реакций и т. д. [c.150]


    Плазмохимические процессы. Плазма представляет собой источник концентрированной энергии при высокой температуре. По характеру воздействия плазмы на химические превращения различают процессы в плазменных теплоносителях и в электроразрядной плазме. [c.173]

    Неравновесные плазмохимические процессы протекают в газоразрядной стационарной плазме пониженного давления. Для проведения этих процессов используют тлеющий разряд на постоянном и переменном токе промышленной частоты, тихий и коронный разряды, высокочастотный и сверхвысокочастотный электродный и безэлектродный разряды, плазму, образованную быстрым адиабатическим сжатием и лазерным излучением [6, 7]. [c.174]

    В плазмохимических процессах большое значение приобретает вывод целевых продуктов. Для обеспечения закалки продуктов плазмохимического синтеза (например, при фиксации азота) необходимо охладить продукты реакции настолько быстро, чтобы они не успели разложиться в процессе охлаждения [4]. [c.176]

    При разработке плазмохимических процессов получения УДП решаются в основном следующие задачи интенсификация технологи-176 [c.176]

    Плазмохимические процессы. Большинство исследованных плазмохимических процессов составляют такие, в которых либо используют- [c.187]

    Во-первых, даже при использовании в исходных продуктах твердой серы энергозатраты на одну молекулу СО оказываются в этом случае вдвое меньшими. Во-вторых, при организации процесса (А) подразумевается отсутствие кислорода в продуктах реакции. Это существенно упрощает задачу разделения продуктов плазмохимического процесса, которая для случая диссоциации чистого СО решается достаточно сложно. [c.150]

    По принципиальной схеме плазмохимический процесс не отличается от любого традиционного химико-технологического процесса. Однако часто некоторые стадии процесса плазмохимии совпадают в пространстве и во времени, так как либо вся реакционная смесь, либо один из ее компонентов находится в плазменном состоянии. Отсюда следует, что полная технологическая схема плазмохимического процесса содержит стадии генерации плазмы, плазмохимических превращений, закалки. Эти процессы проводят в плазмохимических агрегатах, включающих плазмотроны и реакторы. [c.296]

    Гетерофазные плазмохимические процессы часто проводят в реакторах с псевдоожиженным плазмой слоем, в которых резко увеличивается время контакта частиц с плазмой (рис, 4,51). Реактор состоит из конического корпуса /, в верхней части которого находится устройство 3 для подачи твердой фазы. В нижней части реактора установлен электродуговой плазмотрон 4. Плазменная струя через сопло 6 вводится в нижнюю часть реактора. Газообразные продукты процесса подогревают подаваемый порошок и, пройдя через сепаратор 2, выводятся из реактора. Остальные продукты реакции стекают по стенкам реактора и сопла в бункер 5. [c.297]


    Наиболее распространенный способ закалки — охлаждение в теплообменниках. Этот способ применяют для охлаждения газов с температурой до 3700 °С. Широко используют также метод закалки продуктов плазмохимического процесса струями жидкости (воды или реагента) или газа. Например, закалка продуктов плазмохимического пиролиза углеводородов углеводородами повышает выход целевых продуктов, позволяет более гибко регулировать их состав и уменьшает удельные затраты электроэнергии. [c.298]

    Сфера применения плазмохимических процессов постоянно расширяется, и в настоящее время эти процессы применяют в химической, металлургической, электронной, электрохимической промышленности. Многие плазмохимические процессы используют в промышленности, другие проходят опытные и опытно-промышленные испытания. [c.298]

    Таким образом, неравновесные плазмохимические процессы и их технологическое и аппаратурное оформление представляют собой принципиально новый шаг в развитии химической технологии, и в первую очередь в области получения материалов с уникальными свойствами. Использование квазиравновесной плазмы и плазменных струй позволяет- с высокими технико-экономическими показателями реализовать многие важнейшие химические процессы. [c.298]

    Среди подобных процессов особо перспективными и универсальными являются плазмохимические процессы, то есть химические превращения, протекающие в плазме. Плазмой называется частично или полностью ионизированный газ, в котором содержатся молекулы, атомы, ионы и электроны  [c.66]

    Для плазмохимических реакторов характерно крайне малое время реакции, составляющее от 10 до 10 секунды. Это определяет весьма малые размеры реактора. Плазмохимические процессы легко управляются, оптимизируются и поддаются моделированию. Затраты энергии на их проведение не превышают затрат энергии на традиционные процессы. [c.67]

    Характерным примером плазмохимического процесса является производство ацетилена пиролизом метана. [c.67]

    Для каких целей используются в химической промышленности плазмохимические процессы  [c.68]

    Практические применения плазмы. Плазмохимические процессы заняли прочное место в ряде отраслей техники. Они применяются для нанесения металлических покрытий на различного рода изделия, в том числе из полимерных материалов, для получения металлов из оксидов, галидов, сульфидов, для синтеза тугоплавких карбидов, нитридов, оксидов, в форме порошков. Плазменная переплавка стали приводит к получению металла очень высокой прочности и большой долговечности. Плазменные методы отличаются высокой производительностью аппаратуры, но обычно требуют большой затраты энергии. В плазменных процессах, как правило, достигаются очень высокие температуры, которые создают возможности осуществления химических реакции с очень высокими скоростями и образования высокоактивных форм веществ. Особенно эффективно применение плазмы для получения свободных радикалов и атомов из молекул. Так, в тлеющем разряде можно практически полностью осуществить диссоциацию водорода на атомы при 800 К, в то время как при обычном нагревании до этой температуры равновесная смесь содержит лишь 10 % атомов. [c.252]

    Плазма с температурой 10 —2-10 К и при давлении 10- - 10 Па получается в установках, называемых плазмотронами. Взаимодействие между реагентами в плазме приводит к получению нужных продуктов, которые выводятся из состояния плазмы быстрым охлаждением. Для плазмохимических процессов характерны новые типы химических реакций, что связано с высокой концентрацией в ней различных активных частиц. [c.199]

    ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ МНОГОФАЗНЫХ СИСТЕМ И СПЕКТРОСКОПИЧЕСКИЕ ИССЛЕДОВАНИЯ ПЛАЗМОХИМИЧЕСКИХ ПРОЦЕССОВ УТИЛИЗАЦИИ СУПЕРТОКСИКАНТОВ [c.100]

    Рис. 9-18. Схема устройства высоковольтного плазмотрона аля плазмохимических процессов. [c.256]

    Успехи в области энергетики позволят совершенствовать электро- и термохимические процессы получения водорода, плазмохимические процессы окисления азота воздуха, использовать ядерную энергию в процессах конверсии и др. при условии их экономичности. [c.425]

    Неравновесные плазмохимические процессы осуществляют в плазме электрич. разряда пост, тока, высокочастотных и СВЧ газоразрядных устройств при пониж. давлении (менее 30 кПа). Хотя возможность проведения газофазных синтезов в неравновесной плазме показана вполне убедительно (напр., получение озона, фторидов металлов, оксидов азота и др.), П. т. используют в осн. для осуществления гетерофазных процессов получения и травления тонких пленок из орг. и неорг. материалов, обработки и модификации пов-сти изделий с целью придания им требуемых эксплуатац. св-в (антикоррозионных, термостойких, износостойких, антифрикционных и т.п.). [c.555]

    Технологическая схема равновесных плазмохимических процессов включает следующие операции. Теплоноситель или один из реагентов нагревается в плазмотроне с помощью электрического разряда и переводится в состояние плазмы. В смесителе плазма смешивается с остальными реагентами. При температурах (2—10)-103 К может начаться химическая реакция, которая обычно продолжается в реакторе. Чтобы остановить реакцию на требуемой стадии, температуру реагентов резко снижают в закалочном устройстве. Для сохранения продуктов, являющихся промежуточными веществами плазмохимических реакций (например, ацетилена, получаемого при пиролизе метана), чрезвычайно важны момент времени, в который начинают закалку, и скорость снижения температуры. Так, опоздание с закалкой на 2-10 с приводит к уменьшению концентрации ацетилена с 15,5 до 10% В зависимости от скорости закалки конечные продукты могут иметь стехиометрический или нестехиометрический состав (например, ШС или ШгС). [c.96]


    При освещении непрозрачных твердых тел импульсами лазерного сеета происходит мгновенный нагрев, испарение вещества, а при больших мощностях—образование илазмы. Таким образом, лазерное излучение может быть использовано для инициирования высокотемпературных и плазмохимических процессов, для испарения и разложения нелетучих веществ и пр. Так, прн лазерном нагреве кремния и герма- [c.202]

    Первый промышленный плазмохимический процесс по окислению атмосферного азота в плазме электрической дуги был осуществлен в 1900 г. в Норвегии (процесс Биркеланда- Эйде) и в 1902- 1904 гг. в США (процесс Брэдли-Лавджоя). Развитие плазмохимии в СССР связано с фундаментальными работами Л.С. Полака и его школы [6]. [c.173]

    Современные плазмохимические процессы, в том числе и многотон,-нажные, организуются в основном так, что потоки плазмы и сырья [c.173]

    К квазиравновесн ,1м плазмохимическим процессам относят пиролиз углеводородов, хлоруглеродов, фторуглеродов в органической химии, получение оксидов азота, восстановление элементов из руд, оксидов, хлоридов, получение тугоплавких соединений (карбидов, нитридов, оксидов) в неорганической химии. Эти процессы осуществляют при температуре 1000-5000 К и давлении, близком к атмосферному. [c.174]

    В качестве вторюго примера решения прямой кинетической задачи рассмотрим расчет сложного плазмохимического процесса диссоциации СО2 в присутствии серы, стимулированного колебательным возбуждением реагентов [112]. Суммарная реакция [c.150]

    Большие потенции таятся в плазмохимической технологии производства мелкодисперсных порошков — основного сырья для порошковой металлургии, в восстановлении металлов, синтезе оксидов, карбидов, силицидов, нитридов, карбонитридов, боридов таких металлов, как титан, цирконий, ванадий, ниобий, молибден [13]. Все эти соединения являются сверхтвердыми и жаропрочными материалами, столь необходимыми для современного машиностроения. Уже разработана технология синтеза монооксидов (ЭО) элементов, обычно встречаюпщхся лишь в составе диоксидов ЭОг), например монооксида кремния (510), обладающего ценнейшими электрофизическими свойствами. И несмотря на то, что плазмохимические процессы в таких синтезах характеризуются высокими энергетическими параметрами (7ж5000—6000 К тепловой поток до 5—7 МВт иа 1 см ), процессы эти отличаются не только исключительно высокими скоростями, но и относительно низкими удельными энергетическими затратами — всего лишь около 1—2 кВт-ч/кг Таким образом, химия высоких энергий направлена на экономию энергии. [c.235]

    В настоящее время для проведения газофазных плазмохимических процессов наиболее широко применяют реакторы струйного типа. В зависимости от способа перемешивания плазменного потока со струями сырья их подразделяют на прямоточные и со встречными струями. Используют также комбинированные реакторы, в которых часть сырья подается по схеме прямотока, остальная часть — по схеме встречных струй. Сырье в реакторы этого типа вводят спутно-вихревыми или встречно-вихревыми потоками. [c.296]

    Разработаны принципы технологии плазмохимических процессов пиролиза углеводородов, их окисления, селективного синтеза ценных продуктов. В области неорганической химии изучены плазмох 1Мические процессы окисления, восстановления различных соединений, руд и минералов, их разложения, получения тугоплавких соединений (нитридов, карбидов, интерметаллидов), а также такие экзотические реакции, как образование соединений благородных газов. [c.298]

    При освещении непрозрачных твердых тел импульсами лазерного света происходит мгновенный нагрев, испарение вещества, а при больших мощностях — образование плазмы. Таким образом, лазерное излучение может быть использовано для инициирования высокотемпературных и плазмохимических процессов, для испарения и разложения нелетучих веществ и пр. Так, при лазерном нагреве кремния и германия в атмосфере водорода и углерода в атмосфере хлора были получены 81Н4, ОеН4 и СС , соответственно. С помощью мощного лазерного излучения был осуществлен синтез разнообразных углеводородов из графита и водорода. При использовании обычных методов инициирования реакций подобные синтезы невозможны. С помощью лазерного излучения был осуществлен также синтез алмаза из графита. Для перехода графита в алмаз, как известно, необходимы высокие температуры и сверхвысокие давления. Такие условия могут быть [c.220]

    В последнее десятилетие проводятся исследования по применению плазмы для химических реакций возникла фактически но- вая отрасль химии — плаэмохимия. Особенно интенсивно исследования ведутся в Институте нефтехимического синтеза АН СССР. Сущность плазмохимического процесса заключается в том, что смесь, например метана и кислорода, поступает в плазменную струю, где температуры достигают нескольких тысяч градусов. В плазменной струе происходит распад (диссоциация) молекул исходного вещества на атомы, простейшие молекулы, ионы, такие, как СНз, СНа, СН, С, Са, Са, СО, О, 0 +, обладающие очень высокой реакционной способностью. Взаимодействуя между собой, они образуют самые различные соединения, папример формальдегид, окись углерода, воду.  [c.291]


Библиография для Плазмохимические процессы: [c.98]    [c.205]    [c.269]   
Смотреть страницы где упоминается термин Плазмохимические процессы: [c.150]    [c.268]    [c.67]    [c.68]    [c.186]    [c.214]    [c.12]    [c.221]    [c.99]   
Смотреть главы в:

Общая химическая технология -> Плазмохимические процессы

Обзоры по отдельным производствам химической промышленности Выпуск 15 -> Плазмохимические процессы

По отдельным производствам химической Промышлености выпуск 15 -> Плазмохимические процессы


Общая химическая технология (1977) -- [ c.14 , c.386 ]




ПОИСК







© 2025 chem21.info Реклама на сайте