Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбид хрома

    Аустенизация — это термообработка стали (процесс, аналогичный закаливанию углеродистых сталей), состоящая из нагрева ее до 1050—1100°С, кратковременного (в течение 10 мин) выдерживания при этой температуре и последующего быстрого охлаждения. В процессе нагрева карбиды хрома (и углерод) полностью растворяются в аустените быстрое охлаждение препятствует повторному выделению карбидов. Если применялась сварка, то изготовленные изделия рекомендуется вновь подвергнуть аустенизации. [c.447]


Таблица 23. Свойства карбидов хрома, молибдена и вольфрама Таблица 23. <a href="/info/551675">Свойства карбидов</a> хрома, молибдена и вольфрама
    Нагрев вызывает распад карбидов Сг и перевод Сг в твердый раствор, быстрое охлаждение не позволяет в области критических температур вновь образоваться карбидам хрома. [c.253]

    При пребывании металла в опасном (критическом) интервале темпера-т ур по границам зерен аустенита выпадают карбиды хрома Сг С, что приводит к обеднению приграничных участков зерен аустенита 252 [c.252]

    Насколько сильно прег..тсгвуют добавки, например хрома, диффузии водорода в металл, можно видеть из следующих данных проникновение водорода в углеродистую сталь (0,157о С) за один и тот же промежуток времени при отсутствии хрома составляет 0,9 мм, при содержании 1% Сг — 0,3 мм, а при содержании 5% Сг — 0,1 мм. На рис. 118 показана зависимость глубины проникновения водорода в хромистую сталь от температуры газа и содержания хрома в металле. Карбиды хрома ие [c.151]

    Карбиды представляют собой кристаллические тугоплавкие вещества очень большой твердости. Так, карбиды вольфрама почти не уступают по твердости алмазу. Свойства карбидов хрома, молибдена и вольфрама приведены в табл. 23. [c.287]

    Анализ стали труб печей с огневым нагревом после длительного пробега показал значительное снижение содержания в ней хрома и никеля и образование сложных карбидов хрома. Такие изменения в структуре ухудшают свойства сталей, снижают их прочность и пластичность. О местном перегреве свидетельствует более светлый оттенок нагретых труб, имеющих при нормальном обогреве темно-вишневый цвет. [c.134]

    Можно предположить, что зоны образуются следующим образом. Потенциал кислорода газовой фазы сырья недостаточен для того, чтобы окислить внутреннюю поверхность печной трубы вследствие этого окисляются хром и до некоторой степени железо, а частицы никеля лишь обогащают сталь. Так, на внутренней поверхности трубы появляется губчатая окалина с металлическими частичками. Данный слой не в состоянии оказывать защитное действие, поэтому диффузионный процесс между газообразной и твердой фазами активно продолжается. Атомы металла диффундируют по направлению к поверхности трубы, а углерод газовой фазы проникает в металл, особенно по границам зерен, тем глубже, чем больше разрыхлена сталь при этом образуются карбиды хрома различного состава. [c.168]


    Большое значение в машиностроении имеют также некоторые соединения хрома, молибдена и вольфрама. Так, например, поверхность стали, содержащей хром, упрочняется за счет образования нитридов и карбидов хрома. [c.289]

    В некоторых случаях наличие примесей в сплаве, в частности углерода в хромистых сталях, склонного к образованию карбидов хрома и железа, вызывает необходимость увеличения содержания легирующего элемента па то количество, которое расходуется па образование этих карбидов, с таким расчетом, чтобы содержание хрома в [c.128]

    Карбиды хрома, молибдена и вольфрама образуются при непосредственном взаимодействии металлов с углеродом, а также и е монооксидом углерода например  [c.287]

    Коррозионная стойкость хромистых сталей зависит также от режимов термической их обработки. Наиболее распространенным видом термической обработки, обеспечивающим высокую сопротивляемость коррозни хромистых сталей, содержащих хром в количестве около 13%, является закалка с отпуском. При нагреве сталей рассматриваемого типа до высоких температур (950—1000°С) достигаются условия, при которых карбиды хрома переходят в твердый раствор. Если фиксировать это состояние быстрым охлаждением (в масле или на воздухе), то углерод удерживается в твердом растворе. Следующий за процессом закалки отпуск при низкой температуре лишь снимает напряжения закалочного происхождения, незначительно изменяя основную структуру, и таким образом общая сопротивляемость стали коррозионным разрушениям сохраняется. [c.216]

    При воздействии на нержавеющие стали температур в опасном интервале от 450 до 800°С они становятся склонными к межкристаллитной коррозии (МКК). Одним из наиболее эффективных и широко применяемых методов защиты от МКК является легирование стали сильными карбидообразующими элементами, такими, как титан и ниобий. Эти элементы связывают углерод в прочные карбиды, тем самым предотвращая образование карбидов хрома и обеспечивая достаточную концентрацию хрома в твердом растворе. Содержание титана принимают равным Т1 = 5 (С—0,02) /о, ниобия ЫЬ=10 (С—0,02)%, где 0,02%—максимальное содержание углерода, при котором сохраняется стойкость стали против МКК. Однако верхний предел содержания титана в аустенитных сталях не должен превышать 0,8% во избежание образования феррита. Преимуществом ниобия перед титаном является более высокая устойчивость его карбидов к растворению при повышении температуры закалки и к выгоранию при сварке, однако ниобий придает сталям склонность к горячим трещинам при сварке. [c.44]

    Композиционные, или двухфазные, электрохимические покрытия [18] представляют собою осадки металлов, содержащие больщое число включений очень мелких (0,1 —1,0 мкм) частиц минеральных материалов корунда, каолина, карбида кремния, окиси кремния, органических полимеров, боридов, нитридов, окиси алюминия, карбидов хрома, вольфрама, титана и др. Они вводятся в обычные электролиты, применяемые в гальваностегии, и поддерживаются в них во взвешенном состоянии путем перемешивания механическим способом, сжатым воздухом или циркуляцией раствора. [c.353]

    Основным легирующим элементом, повышающим стойкость металла к коррозии, является хром. При нормальных условиях его присутствие придает металлу стойкость к коррозии от влаги. При повышенных температурах хром придает металлу стойкость к коррозии, вызываемой газовыми агрессивными потоками. Она имеет место в трубах печей, реакторах, теплообменниках нагрева сырья со стороны газопродуктового потока. С ростом содержания хрома стойкость к коррозии увеличивается особой стойкостью обладают хромоникелевые сплавы. Из других добавок очень хорошо проявляет себя молибден. Однако характерным недостатком хромоникелевых сплавов является их склонность к межкристаллит-ной коррозии, при которой процесс разрушения развивается не на поверхности, а по границам кристаллов. Теория это объясняет образованием карбидов хрома при длительном нафевании сплавов выше 350°С. При этом участки, прилегающие к границам зерен или кристаллов, обедняются хромом и теряют свою коррозионную стойкость. Наиболее уязвимы для межкристаллитной коррозии сварные швы. [c.169]

    I — карбиды хрома Я — зона нормального твердого раствора Л — зона обедненного углеродом твердого раствора [c.367]

    I — карбиды хрома 2 — зона нормального твердого раствора 3 — зона обедненного углеродом твердого раствора (по данным В. П. Батракова) [c.381]

    Науглероживание распространяется на глубину 5—25 мкм и сопровождается потерей и.з повер.хностны.х слоев легирующих добавок (см. рис. а также образованием карбидов хрома и карбонилов никеля. Результатом науглероживания является резкое снижение эрозионной стойкости деталей ввиду повышенной хрупкости карбидов. Возможно и усиление электрохимической коррозии, связанной с образованием карбидов и карбонилов, имеющих неодинаковый электрический потенциал с другими соединениями. Алитирова-ние и эмалирование защищает металл от газовой коррозии (рис. 5.35). [c.181]

    Соотношение между количествами углерода и хрома определяет структурные особенности двойной системы Ре — Сг. тле-род образует с хромом ряд весьма проч. ых карбидов и по этой причине уменьшает концентрацию хрома в твердом растворе. Известны три типа карбидов хрома кубический СггзСе, триго-нальный СГ7С3 и орторомбпческий СГ3С2. В области высокоуглеродистых сплавов суш,ествует еще один карбид СгС, но этот кар-бпд при температурах ниже 1800 С не встречается, так как он [c.210]


    Особенности конструирования элементов корпусов сосудов из аустенитных сталей. Основным технологическим приемом изготовления корпусов сосудов из аустенитных сталей является сварка. При конструировании сварных корпусов необходимо учитывать дефицитность и высокую стоимость аустенитных сталей (в 1,5— 3,9 раза дороже качественно конструкционной стали в зависимости от состава и сортамента). Из высоколегированных сталей следует изготовлять лишь те элементы корпуса, которые подвержены воздействию агрессивной среды, выполняя остальные детали из углеродистых сталей но ГОСТ 380 -71. При перегреве в процессе сварки возможно выгорание легирующих элементов и образование карбидов хрома с последую[цими потерями антикоррозионных свойств и появлением ослонности к межкристаллитной коррозии. Для исключения последней в сварных конструкциях используют аустенитные стали, дополнительно легированные титаном, который связывает карбиды хрома. [c.115]

    Положение переходной области на оси потенциалов зависит от многих факторов и, в частности, от ориентации кристаллических граней на поверхности электрода. Поэтому при заданном потенциале могут достигаться условия пассивации одних граней, тогда как другие продолжают активно растворяться. Это играет важную роль в истолковании природы некоторых видов коррозии. Аналогично этому каждая структурная составляющая сплава также характеризуется своей парциальной потенциостатической кривой. На рис. 195 представлены парциальные потенциостатические кривые компонентов нержавеющей стали, содержащей 18% хрома, 8% никеля и не большую примесь углерода. При застывании этой стали по границам зерен выпадают карбиды хрома СгазСя и Сг,Сз, далее следует узкая зона обедненного углеродом раствора и, наконец, среднюю часть зерна образует твердый раствор, в котором содержание компонентов отвечает среднему составу сплава. Если потенциал электрода поддерживается в переходной области, то, как видно из рис. 195, наиболее быстрому растворению подвергается зона обедненного углеродом металла. При потенциалах в области перепассивации происходит более интенсивное растворение карбидов хрома. При этом сталь подвергается межкристаллитной коррозии. [c.366]

    Увеличение содержания хрома в стали снижает возможность локального уменьшения его концентрации в процессе выделения карбидов хрома на границах зерен ниже 12%- При увеличении содержания хрома от 18 до 22% предельное содержание углерода, ниже которого у стали появляется склонность к межкристаллитной коррозии, возрастает с 0,02 до 0,06%. С ростом содержания никеля увеличивается склонность аустенитных сталей к межкристаллитной коррозии. Влияние содержания никеля на склонность хромопикелевых сталей к межкристаллитной коррозии в разных средах различно. В концентрированной HNO3 неблагоприятное влияние сказывается при содержании никеля более 28%- В кипящем 42%-ном Mg b склонность к межкристаллитной коррозии возрастает с увеличением содержания никеля до 10%, а затем падает. [c.446]

    Ножевая коррозия. При определенных условиях сварки стабилизированные аустенитные стали становятся чувствительны к МКК вследствие выделения карбидов хрома. При этом разрушение происходит в узкой полосе металла, прилегающего к шву, и имеет вид ножевого разреза. В результате потери хрома узкая полоса металла, прилегающая к шву, станет чувстви- [c.447]

    Коррозионностойкое легирование и термообработку используют в основном тогда, когда металл конструкции не позволяет применять другие меры защиты. Термообработка способствует предотвращению выпадени карбидов хрома по границам зерен нержавеющей стали аустенитного класса, гомоге-пизацип структуры металла, снятию внутренних напряжений. [c.461]

    С и 13 % Сг, обладает минимальной устойчивостью к ит-тингу и общей коррозии в 3 % растворе Na l при комнатной температуре после отпуска при 500 °С. Для аналогичной стали, содержащей 0,06 % С, тот же эффект наблюдается в результате отпуска при 650 °С [10]. В общем случае, если возможно, следует избегать отпуска сталей при температурах 450—650 С. Понижение коррозионной стойкости при отпуске, по-видимому, отчасти обусловлено превращением мартенсита, содержащего углерод внедрения. В результате образуется сетчатая структура включений карбида хрома, и обедняется хромом прилегающая металлическая фаза. [c.302]

    Склонность аустенитных нержавеющих сталей к межкристаллитной коррозии зависит от содержания в них углерода. Малоуглеродистая сталь (<0,02% С) относительно стойка к коррозии этого типа [151. Азот, обычно присутствующий в промышленных сплавах в количествах, достигающих нескольких сотых процента, не столь сильно способствует разрушениям, как углерод (рис. 18.3) [16]. При высоких температурах (например, при 1050 °С) углерод почти равномерно распределен в сплаве, однако в области температур сенсибилизации (или при несколько более высоких температурах) он быстро диффундирует к границам зерен, где соединяется преимущественно с хромом с образованием карбидов хрома (например, МазСв, в котором М обозначает хром и небольшое количество железа). В результате этого процесса прилегающие к границам зерен участки сплава обедняются хромом. Его содержание может упасть ниже 12 %, которые необходимы для поддержания пассивности. В местах превращений объем сплава меняется, и это изменение объема распространяется от границы зерен на небольшое расстояние в глубь зерна. В результате на протравленной поверхности наблюдается расширение границ зерен. В сплаве, обедненном хромом, образуются активнопассивные элементы с заметной разностью потенциалов. Зерна представляют собой катодные участки большой площади по сравнению с небольшими анодными участками границы зерен. Протекание электрохимических процессов приводит к сильной коррозии вдоль границ зерен и проникновению агрессивной среды в глубь металла. [c.305]

    Хромоникелевые аустенитные стали при температурах выше 400 °С склонны к межкристаллитной коррозии, суть которой заключается в выпадении по границам зерен карбида хрома. Обеднение границ зерен хромом приводит к потере коррозионной стойкости стали и к ухудшению ее механических свойств. Особенно сильно подвержена межкристаллитной коррозии сталь марки 1Х18Н9Т, широко применяемая для изготовления аппаратов нефтеперерабатывающих заводов, поэтому если аппараты работают при высоких температурах, то сталь необходимо подвергнуть стабилизирующему отжигу. Сопротивление стали межкристаллитной коррозии еще больше увеличивается при добавлении титана. [c.20]

    Буферный 4" фланец из стали Uranus 50 фонтанной арматуры разрушился через семь лет эксплуатации (рис. 66). Зарождение и распространение трещин сероводородного растрескивания происходило по границам зерен аустенита в местах скопления карбидов железа. Обеднение границ зерен карбидами хрома было вызвано, вероятно, нарушением режима термической обработки фланца, твердость металла которого достигала 25 HR . [c.27]

    Порошковые композиции на основе карбидов хрома и титана, разработанные в НИИ порошковой металлургии, успешно используются для плазменного и газотермического напыления термозашитных и износостойких покрытий. [c.22]

    Карбид хрома и немного цементита (РвзС) кипятят с водой, при этом происходит реакция выделяется водород образуется также жидкий углеводород или иногда уголь. [c.564]


Смотреть страницы где упоминается термин Карбид хрома: [c.13]    [c.115]    [c.421]    [c.425]    [c.425]    [c.527]    [c.542]    [c.163]    [c.164]    [c.167]    [c.221]    [c.221]    [c.225]    [c.233]    [c.40]    [c.448]    [c.22]    [c.381]   
Коррозия и защита от коррозии (2002) -- [ c.131 , c.184 , c.189 , c.192 , c.195 ]

Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.2 , c.3 ]

Коррозия и защита от коррозии Изд2 (2006) -- [ c.131 , c.184 , c.189 , c.192 , c.195 ]




ПОИСК







© 2025 chem21.info Реклама на сайте