Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аналогичные соединения

Рис. 3.27. Взаимосвязь между изменениями стандартной энергии Гиббса образования аналогичных соединений кремния и бора Рис. 3.27. <a href="/info/939508">Взаимосвязь между</a> <a href="/info/1501346">изменениями стандартной энергии Гиббса</a> образования <a href="/info/1179504">аналогичных соединений кремния</a> и бора

    Азот образует трифторид NF3, но молекула NF5 не существует. Однако для фосфора известны оба аналогичных соединения, PF3 и PF5. Запишите льюисовы структуры для NF3, PF3 и PF5. Попробуйте объяснить, почему молекула PF5 устойчива, а молекула NF5 неустойчива. На основании этого предскажите, какая из следующих молекул не существует OFj, OF4, OFg, SFj, SF4, SFg. Запишите льюисовы структуры и дайте пояснения, отвечающие вашему предположению. [c.505]

    Подобное изучение относительной реакционной способности циклических олефинов показало, что углеводороды, содержащие пятичленные кольца, более реакционноспособны, чем аналогичные соединения с шестичленными кольцами [2]. Принимая опять октен-1 за единицу, были найдены следующие относительные значения реакционной способности циклопентадиен 4,5 циклогексадиен-1,3 4,0 инден 3,0 бицикло [c.236]

    Карбоксильная группа может быть присоединена к углеводородной цепочке любой длины. Однако почти во всех таких соединениях, встречающихся в природе, общее число атомов углерода оказывается четным. Например, в молекуле уксусной кислоты — два атома углерода. Есть карбоновые соединения с четырьмя, шестью, восемью и так далее атомами углерода, их может быть больше двадцати. А аналогичных соединений с нечетным числом атомов углерода в природе почти не бывает. [c.157]

    Какие соединения образует фосфор с водородом Указать способы нх получения. Сравнить их свойства со свойствами аналогичных соединений азота. [c.232]

    Б главных подгруппах устойчивость соединений, в которых элемент проявляет высшую степень окисленности, с увеличением порядкового номера элемента, как правило, уменьшается. Так, соединения, в которых степень окисленности углерода или кремния равна +4, вполне устойчивы, тогда как аналогичные соединения свипца (например, РЬОг) мало устойчивы и легко восстанавливаются. В побочных подгруппах проявляется обратная закономерность с возрастанием порядкового номера элемента устойчивость высших окислительных состояний повышается. Так, соединения хрома (VI)—сильные окислители, а для соединений молибдена (VI) и вольфрама(VI) окислительные свойства ие характерны. [c.648]

    В нем хорошо растворяются вода, фториды, сульфаты и нитраты s-элементов I группы, несколько хуже аналогичные соединения s-элементов II группы. При этом растворенные веш.ества, отнимая от молекул НР протоны, увеличивают концентрацию отрицательных ионов (HFj), т. е. ведут себя как основания. Например  [c.284]

    При пропускании хлора в треххлористый фосфор получается хлорид фосфора(У), или пятихлористый фосфор, РС1,г который прн обычных условиях образует твердую белую массу. Пятихлористый фосфор тоже разлагается водой с образованием хлористого водорода и фосфорной кислоты. Аналогичные соединения фосфор образует с бромом, иодом и фтором одиако для иода соединение состава PI5 неизвестно. [c.420]


    В отличие от гидроксидов железа(И) и кобальта(П), гидроксид никеля (И) кислородом воздуха не окисляется. В этом проявляется более высокая устойчивость к окислению соединений никеля (И) г.о сравнению с аналогичными соединениями жел( за и кобальта. [c.695]

    Азотсодержащие соединения в гидрогенизационных процессах играют весьма важную роль, так как даже небольшое количество их снижает активность стационарных, особенно расщепляющих, катализаторов (см. гл. 1). Поэтому в первых ступенях процесса стремились возможно полнее разрушить азотсодержащие соединения, что контролировалось по общему содержанию азота. Превращения этих соединений изучались также в первую очередь с целью выяснения условий их полной деструкции или моделирования превращений аналогичных соединений, содержащихся в угле и смолах. [c.208]

    Энтропия аналогичных соединений натрия и магния, отнесенная к 2 г-экв соединения [c.96]

    Не исключается возможность присутствия аналогичных соединений и в нефтях. [c.175]

    Карбонил ы. Ки(С0)5 (ж) — бесцветный, молекула — тригон. бипирамида т. пл. —22 С Ки5(СО)]5С — строение такое же, как у аналогичного соединения Ре (см. дополнение к разд. 8.6) РЬа(СО)а (к) — светло-зеленый Оз(СО)5 (ж) — бесцветный, т., пл. —15°С Озз(СО) 12 — желтый, т. пл. 224°С, возг. при 130°С, кластер, структура [c.578]

    В последнее время особое значение приобретают продукты сульфохлорирования полиэтиленов. При взаимодействии полиэтилена с хлором и сернистым ангидридом получаются продукты, содержащие около 2G— 29% хлора и от 1,3 до 1,7% серы. Отсюда можно подсчитать, что прп молекулярном весе полиэтилена, равном 20000, каждый седьмой атом С связан с атомом хлора, а каждый девяностый атом с сульфохлоридной группой. Такой продукт вулканизируется добавкой ароматических диаминов, как,, например, бензидипа или диоксима, тиурамена и аналогичных соединений. При этом получается цепное каучукообразное вещество (гипалон Sa фирмы Дюнон). Возможности различных вариаций состава и свойств продуктов, которые могут быть получены на основе полиэтиленов, как в связи с различной глубиной сульфохлорирования, так п путем применения полиэтиленов различного молекулярного веса, очень велики. [c.142]

    Аналогичные соотношения справедливы и для Д5°, и для других величин. Этот путь, по-видимому, представляет интерес и при исследовании аналогичных соединений серы, хлора, фтора и т. д. Образование комплексных и двойных хлоридов из соответствующих простых хлоридов, образование двойных и комплексных фторидов из соответствующих простых фторидов и реакции взаимодействия между цианидами, гидридами, гидроксидами, сульфидами и другими соединениями подчиняются аналогичным закономерностям [c.58]

    Характер изменения ан с изменением температуры в общем аналогичен, хотя относительное изменение ан и несколько больше. Общие закономерности, описанные здесь для моноокисей, сохраняются и для других аналогичных соединений. [c.113]

    При недостатке данных для соединений строго однотипных с рассматриваемым можно использовать для сопоставления вещества менее однотипные, например аналогичные соединения элементов первого и второго рядов периодической системы или элементов другой подгруппы или другой (лучще смежной) группы. В таких случаях хорошие результаты дает метод двойного сравнения Этот метод основан на введении в расчет другой пары однотипных соединений, аналогичной рассматриваемой, и допущении, что температурная зависимость величин а или X в обеих парах соединений одинакова. Такой путь расчета требует исходных данных для большого числа веществ, но зато дает возможность получить более точные результаты (или использовать для сравнения менее однотипные вещества). [c.123]

    Степень однотипности реакций может быть различна в зависимости от степени однотипности участвующих в реакции веществ ( 15), а также от других факторов, указываемых ниже. Реакции должны различаться не более чем одним элементом, при этом существенно, чтобы число отличающихся (однотипных) веществ в каждой части уравнения было не больще одного (в крайнем случае в одной из них не превышало бы двух), а остальные компоненты были бы одинаковы в обеих реакциях. Реакции, происходящие с изменением валентного состояния элементов, которыми они различаются, могут быть менее однотипными, так как степень однотипности аналогичных соединений двух элементов может быть неодинаковой в исходных веществах и в продуктах реакции. В частности это относится и к реакциям, в которых аналогичные элементы участвуют в виде простых веществ, и может сильно уменьшать применимость метода однотипных реакций к реакциям образования данного соединения из простых веществ или из свободных атомов элементов (см. 25—28). [c.132]

    В табл. IV, 9 подобным же путем сопоставлены однотипные реакции разложения фтористым водородом метатитанатов магния и кальция. Здесь постоянство ан и Ян выдерживается несколько хуже, по-видимому, в связи с тем, что аналогичные соединения магния и кальция и по другим свойствам различаются несколько больше, чем соединения стронция и бария. Однако ошибка при расчете по методу отношений и в этом случае не превышает 3%- [c.145]


    Подобное же соотношение он применил для расчета ДЯ аналогичных соединений двух элементов, соседних по периоду (считая на один грамм-эквивалент). [c.149]

    Учитывая неточность такого допущения, он нашел, что можно получить хорошее согласие с экспериментальными данными, если принять, что это отношение равно не единице, а подобному же отношению в другом ряду аналогичных соединений. Для общего случая такое равенство в принятых в этой книге обозначениях может быть представлено в виде [c.151]

    Если данных для соединен йй, строго однотипных с рассматриваемым, недостаточно, на практике нередко возникает необходимость использовать для сопоставления свойств вещества менее однотипные, например соединения элементов второго ряда периодической системы (лития, бериллия, бора) или аналогичные соединения элементов, принадлежащих к другой подгруппе (и даже к другой группе) периодической системы, или первые члены гомологических рядов органических соединений. В таких случаях хорошие результаты получаются с помощью метода двойного сравнения (см. 19). [c.177]

Рис. 3.7. Взаимосвязь между измсненипмн стандартной энергии Гиббса образования аналогичных соединений магнин и лития Рис. 3.7. <a href="/info/939508">Взаимосвязь между</a> измсненипмн <a href="/info/1638799">стандартной энергии Гиббса образования</a> аналогичных соединений магнин и лития
    Оксогалиды 5Ь(П1) и В1(П1) состава ЭОНа в обычных условиях — твердые, нерастворимые в воде вещества с координационнослоистой рететкой, структурно совершенно отличные от аналогичных соединений фосфора (1П) и мышьяка (III). Расположение атомов в слое кристалла В10С1 показано на рис. 165. [c.386]

    Детергенты (detergents) являются поверхностно-активными веществами, обладающими моющими свойствами, защищающими поверхность деталей от прилипания и скопления на них продуктов окисления. Анионными детергентами обычно бывают маслорастворимые алкилбензолсульфонаты, фосфонаты и другие аналогичные соединения. Некоторые сульфонаты имеют щелочные свойства и являются эффективными нейтрализаторами кислых продуктов окисления. По щелочности, которая характеризует эффективность присадок, сульфонаты делятся на нейтральные (10-30 мг КОН/г), щелочные (30- 100 мг КОН/г), и очень щелочные (100 - 300 мг КОН/г). В состав очень щелочных присадок могут входить диспергированные окиси, гидроокиси и карбонаты металлов. Щелочные присадки необходимы в маслах для дизелей, с целью нейтрализации серной кислоты, которая образуется при сгорании сернистого дизельного топлива. [c.32]

    Применяя это прарило к узким группам аналогичных соединений родственных элементов, можно получить ориентировочные данные для теплот сбразова-ния неизученных соединений. [c.67]

    Ренат калия K2Re04 диспропорционирует в растворе по,аобно аналогичному соединению марганца. Написать уравнение реакции. [c.214]

    Какова причина образования соединения НзНВРз Возможно ли образование аналогичного соединения между Н2О и ВРз  [c.24]

    В последнее время началось развитие квантово-химических методов расчета энергии сорбции. Так Дункен и Онитц [49 ] и Шодов, Андреев и Петков [50 ] провели квантово-химические расчеты энергии адсорбции водорода, этилена и циклогексана на никелевом катализаторе и получили результаты, не сильно отличающиеся от экспериментальных. Такого рода квантово-химические расчеты совместно с изложенными выше положениями Баландина, Темкина и Ройтера создают возможность подбора с помощью вычислительных машин оптимальных катализаторов из серии аналогичных соединений. Это, конечно, может значительно уменьшить объем экспериментальной работы при подборе катализаторов. [c.163]

    Для предсказания свойств простых веществ и соединений Д. И. Менделеев использовал следующий прием он находил неизвестные свойства как среднее а р н ф м е т 1 ч е с к о е нз свойств окружающих элемент соседей в периодической системе, справа и слева, сверху и снизу. Этот способ может быть назван методом Д. И. Менделеева. Так, например, соседями селена слева и справа являются мышьяк-и бром, образующие водородные соединения НзАз н НВг очевидно, селен может образовать соединение НгЗе и свойства этого соединения. (температуры плавления и кипения, растворимость в воде, плотность в жидком и твердом состояниях и т. д.) будут близки к среднему арифметическому из соответствующих свойств НзАз иЛВг. Так же можно определить свойства НгЗе как среднее из свойств аналогичных соединений элементов, расположенных в периодической системе сверху и снизу от селена,— серы и теллура, т. е. НгЗ н НгТе. Очевидно, результат получится наиболее достоверным, если вычислить свойства НгЗе как среднее из свойств четырех соединений НзАз, НВг, Нг5 и НДе. Данный метод широко применяется и в настоящее время для оценки значений свойств неизученных веществ. [c.38]

    Двойная связь в молекулах этих изомеров препятствует вращению групп СНС1, поэтому данные изомеры не могут переходить друг в друга. У аналогичных соединений с одинарной связью цис-транс-изомерия отсутствует, так как возможен поворот групп вокруг одинарной связи. [c.57]

    Увеличение стягивания иопов в результате их поляризации приводит к тому, что длина диполя оказывается меньше межъядерного расстояния (так, длина диполя в молекуле КС1 равна 167 пм, в то время как межъядерное расстояние составляет 267 пм). Это различие особенно велико у водородосодержащих соединений. Если пренебречь размерами иона водорода, то в предположении чисто ионной связи расстояние между ядрами во- дорода и галогена должно равняться г -. Однако < г -для всех Э, так, Гс,-= 181 пм, а н- i = 127 пм. Это означает, что в отличие от других катионов протон проникает внутрь электронной оболочки аниона. Внедрившись в анион, протон оказывает сильное поляризующее действие, что приводит к резкому уменьшению полярности водородных соединений (по сравнению с аналогичными соединениями других катионов). Поляризационный же эффект приводит к тому, что длина диполя НС1 составляет -всего 22 пм. Наконец, проникновение протона внутрь аниона обусловливает уменьшение деформируемости последнего. [c.113]

Рис. 3.13. Взаимосвязь между изменением енергии Гиббса образования аналогичных соединений алюминия и бериллия Рис. 3.13. <a href="/info/939508">Взаимосвязь между</a> изменением енергии <a href="/info/12513">Гиббса образования</a> аналогичных соединений алюминия и бериллия
    Следует назвать ряд больших сводок по термодинамическим свойствам окислов и галогенидов при обычных и высоких температурах, опубликованных Брюером с сотр. Сюда включено большое число новых значений, вычисленных авторами на основе той или другой закономерности в свойствах аналогичных соединений. Из числа работ, посвяшенных специально низкотемпературным свойствам, здесь можно сослаться лишь на работы содержащие данные об основных термодинамических свойствах гелия, водорода, азота, кислорода и окиси углерода. [c.80]

    Латимер. указывает, что погрешность рассчитанных по этим инкрементам значений энтропии не превышает 1—2 кал/К-моль. Однако нетрудно подыскать примеры, где ошибка в действительности существенно больше. Так, по этой схеме расчета разность между значениями энтропии (Sms) аналогичных соединений двух металлов, обладающих одинаковым зарядом ионов, должна быть одинакова и, например, для аналогичных соединений магния и двухвалентного железа должна раЁняться 10,4 — 7,6 = 2,8 кал/К--моль при различии на один атом или вдвое большей величине при различии на два атома. В табл. HI, 6 приведены значения S298 таких соединений и разности между ними. Постоянство в этом случае [c.96]

    По-видимому, Лотье впервые описал, что между двумя рядами значений теплот образования галогенидов одновалентных металлов (и галогеноводородов) наблюдается линейная зависимость. Такие же соотношения он наблюдал и ири сопоставлении других аналогичных соединений. [c.150]

    Независимо от этих работ М. X. Карапетьянц показал на обширном материале существование линейной зависимости между теплотами образования в сходных рядах соединений элементов, принадлежащих к одной подгруппе периодической системы. Из описанных им примеров следует, что линейная зависимость может иметь место не только при сопоставлении однотипных соединений, например хлоридов и бромидов элементов подгруппы бериллия (рис. IV,3), но в ряде случаев и при сопоставлении соединений неоднотипных. Подобный результат, по наблюдению М. X. Карапетьянца, получается и при сопоставлении хлоридов, оксихлори-дов и трехокиси молибдена с аналогичными соединениями вольфрама (рис. IV, 4), хотя в каждом из этих рядов объединены отнюдь не однотипные соединения. [c.151]

    Эрдеш и Черны применив теорию по добия Кирпичева к выражениям основных термодинамических функций, исиользуе.мым в статистической термодинамике, вывели новые соотношения между значениями одинаковых термодинамических функций для аналогичных соединений элементов, принадлежащих к одной группе периодической системы. В работе рассматриваются соединения, молекулы которых подобны между собой по составу и структуре и различаются лишь центральным атомом, например ССЦ, 31С1,. .., КНз. РНз, АзНз,. .., МоРб, УРб, ПРе,. ... Так, Эрдеш и Черны нашли, что температуры, отвечающие одинаковы.м значе- [c.204]

    Леманн и Рушитский описали структурно-инкрементный метод расчета теплоты образования АЯ различных углеводородов при температурах от 298 до 1500 К. Примененный способ расчета этих инкрементов и поправок в работе не описан. По-видимому, значения их определялись на основе единичных экспериментальных данных. Для температур, отличных от 298 К, некоторые значения были получены путем оценки по данным, относящимся к другим (аналогичным) соединениям. [c.264]


Смотреть страницы где упоминается термин Аналогичные соединения: [c.128]    [c.415]    [c.429]    [c.493]    [c.635]    [c.647]    [c.180]    [c.95]    [c.51]    [c.501]    [c.517]    [c.152]   
Методы практических расчетов в термодинамике химических реакций (1970) -- [ c.96 ]




ПОИСК







© 2025 chem21.info Реклама на сайте