Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель микроколичеств кадмия

    Примером использования избирательной адсорбции может служить концентрирование микроколичеств катионов металлов, содержащихся в воде (водопроводная вода, вода природных водоемов и т. д.), на активированном угле с последующим определением их содержания. Для этого к достаточно большому объему анализируемой воды (-1 л) прибавляют аммиачный буфер до pH 8—9 и 8-оксихинолин (раствор в ацетоне), который образует относительно прочные оксихинолинатные комплексы с катионами металлов, присутствующих в микроколичествах в анализируемой воде (ионы меди, цинка, кадмия, ртути, алюминия, свинца, хрома, марганца, железа, кобальта, никеля и др.). Затем воду пропускают через активированный уголь, находящийся на фильтре. При фильтровании оксихинолинатные комплексы металлов практически количественно адсорбируются на активированном угле (коэффициент концентрирования равен -Ю ), из которого они могут быть десорбированы обработкой небольшим объемом раствора азотной кислоты НМОз (около 10 мл). В полученном азотнокислом концентрате можно определить содержание указанных металлов различными методами (например, оптическими). [c.236]


    Работа 16. Определение микроколичеств никеля в присутствии макроколичеств кадмия  [c.100]

    Аналогично цинку с роданидом метилового фиолетового можно соосаждать и другие элементы, образующие комплексные анионы, например, висмут, медь, кадмий. На этом же принципе основан способ отделения микроколичеств цинка, кадмия, ртути, висмута и кобальта от макроколичеств никеля, магния и хрома [147]. Разделение ионов при помощи ионообменников. Применение органических и минеральных ионообменников для разделения ионов основано на различии прочности соединений ионов с ионообмен-ником. При этом методе разделения ионов используют различие в таких свойствах, как заряды или объемы ионов, степень их гидратации или гидролиза, различие в способности к образованию комплексных соединений с растворителем (элюентом) и изменение этих свойств в зависимости от pH среды и природы ионообменника. [c.81]

    Аналогично цинку с роданидом метилового фиолетового можно соосаждать и другие элементы, образующие комплексные анионы например, висмут, медь, кадмий. На этом же принципе основан способ отделения микроколичеств цинка, кадмия, ртути, висмута и кобальта от макроколичеств никеля, магния и хрома [114].  [c.57]

    Медь часто приходится отделять от других компонентов образца перед определением ее методами, описанными ниже. Для отделения меди от железа, никеля, кобальта, марганца и т. п. и, вероятно, менее успешно, от цинка можно использовать осаждение ее сероводородом из разбавленного кислого раствора. До сих пор, однако, не было критического исследования выделения микроколичеств меди сероводородом. Хотя некоторые авторы сообщали о неполном выделении меди этим методом, другие применяли его с несомненно хорошими результатами При выделении меди путем осаждения из слабокислого раствора в виде сульфида свинец является лучшим коллектором, чем кадмий и олово (табл. 34). На полноту выделения меди значительно влияет время, протекающее между осаждением и фильтрованием осадка. [c.305]

    Сущность работы. Определение микрограммовых количеств никеля во многих объектах связано с отделением его (в виде диметилглиоксимата никеля) от посторонних веществ экстракцией хлороформом. В ряде случаев методику отделения можно упростить. Так, если при определении примеси никеля в солях кадмия брать для создания щелочной среды не едкий натр, а аммиак, то кадмий образует бесцветный прозрачный аммиакат, который не мешает определению никеля, и следовательно, отпадает необходимость отделять микроколичества никеля от макроколичеств кадмия. [c.100]


    Хорошо зарекомендовал себя способ извлечения микроколичеств меди из кислого раствора с помощью раствора дитизона в хлороформе. Таким образом, медь удовлетворительно отделяется от цинка, кадмия, свинца, мышьяка, сурьмы, германия, ванадия, вольфрама, молибдена, марганца, железа, никеля и др. Дитизоном нельзя отделить медь от палладия, золота, серебра, ртути и висмута, так как катионы этих элементов образуют дитизонаты в кислой среде. Со-экстракцию висмута, впрочем, можно предотвратить обработкой исследуемого раствора йодистым калием. [c.9]

    Электролизом с ртутным катодом из раствора можно эффективно удалять большие количества многих тяжелых металлов, которые нежелательны при анализе. В разбавленном растворе серной кислоты на ртутном катоде осаждаются железо, хром, никель, кобальт, цинк, кадмий, галлий, индий, германий, медь, олово, молибден, рений, висмут, таллий, серебро, золото и металлы платиновой группы (за исключением рутения и осмия) в то же время такие элементы, как алюминий, титан, цирконий, фосфор, ванадий и уран, количественно остаются в растворе Этот метод особенно ценен при определении последней группы элементов в металлургических материалах. Так, электролиз с ртутным катодом обеспечивает превосходное отделение железа, мешающего при определении алюминия в стали. Не всегда легко без остатка выделить осаждаемые элементы. Микрограммовые количества их остаются в растворе даже при условии, что предпринимаются самые тщательные меры. В раствор будут попадать микроколичества ртути, так как она имеет заметную атомную растворимость ( -25 у/л воды при комнатной температуре). По имеющимся данным при концентрациях серной кислоты от 0,1 до 6 н. можно достичь фактически полного электролитического осаждения Си, 2п, Сс1, 1п, Т1, 8п, В1, Ре и, весьма вероятно, также Ag, Аи, Hg и некоторых металлов платиновой группы. При кислотности в пределах 0,1—1,5 н. удается полностью выделить Со и N1. Другие металлы (Оа, Аз, 5е и Сг) можно осадить только из 0,1 н. серной кислоты. Из серной кислоты в пределах концентраций от 0,1—6 н. неполно осаждаются Ое, 8Ь, Те, Мп, Яе и, вероятно. Ни. После проведения [c.43]

    Адсорбционно-комплексообразовательные колонки с носителем ДАУХ и реагентом диметилглиоксимом или 1-нит-розо-2-нафтолом впервые были использованы для очистки сульфатов цинка и кадмия от следов меди, железа, никеля и кобальта — металлов, которые даже в микроколичествах оказывают сильное воздействие на оптические свойства люминофоров, полученных на основе сульфидов цинка и кадмия. При pH = 6,8—7,2 в присутствии HjOa в растворах солей цинка, кадмия, щелочных и щелочноземельных элементов концентрация указанных примесей после очистки снижается на несколько порядков и составляет 1 10 — 4 Ю г/мл при концентрации очищаемых солей, равной 8—10%, что свидетельствует о высокой эффективности метода. [c.249]

    В качестве коллекторов применяют сульфид меди для соосаждения цинка, молибдена, свинца и других металлов сульфид кадмия, и висмута — для соосаждения меди, цинка, свинца, никеля, кобальта, серебра, ртути, молибдена и др. гидроокись алюминия— для железа, свинца, хрома, висмута, кобальта, олова и др. двуокись марганца — для кобальта [22, 23] фосфоромолибдат аммония как коллектор предложен для концентрирования вольфрама [24], ниобия и тантала при определении этих примесей в молибдене [25] и для соосаждения микроколичеств германия [26]. Было установлено, что с фосфоромолнбдатом соосаждаются элементы V/, ЫЬ, Та, Т1, Ре, Са, Се, 1п, Сз, Аи, 81, Mg, Са, 5г, Ва, Оу, 2г, 5п, V, Сг, Аз, Мп, Со, N1. [c.172]

    В литературе описаны также дигидразинаты тиоцианатов никеля, кобальта, цинка, кадмия и марганца [12]. Все они слабо растворимы в воде и могут быть получены при добавлении аммиачного раствора сульфата гидразина к водным растворам солей металлов, содержа-щим большие количества тиоцианата аммония. Все эти соединения, за исключением соли никеля, разлагаются в горячей воде с образованием гидроокисей соединение марганца разлагается даже в холодной воде. Измерения электропроводности указывают- на наличие в каждом случае трех ионов, что свидетельствует о существовании в растворе иона металла, связанного с двумя молекулами гидразина. Было предложено использовать реакции образования дигидразинатов тиоцианатов цинка и кадмия для открытия микроколичеств ионов цинка и кадмия в растворах [13]. [c.178]


Смотреть страницы где упоминается термин Никель микроколичеств кадмия: [c.341]    [c.118]    [c.60]    [c.257]    [c.118]   
Физико-химичемкие методы анализа (1964) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Микроколичества



© 2024 chem21.info Реклама на сайте