Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма в виде сульфида

    Очень важно, что величины произведений растворимости разных сульфидов различаются чрезвычайно сильно. Это позволяет,, надлежащим образом регулируя величину pH раствора, разделять катионы разных металлов путем осаждения их в виде сульфидов. Так, из качественного анализа известно, что сульфиды IV и V аналитических групп осаждаются сероводородом в кислой среде, так как величины их произведений растворимости очень малы (порядка 10 29 J, менее). Наоборот, осаждение катионов П1 аналитической группы (произведение растворимости порядка 10 —10" ) сероводородом или сульфидом аммония проводят в щелочной среде (при pH около 9). Аналогичные методы нередко применяются и в количественном анализе, например для отделения катионов меди, висмута, олова и других металлов от катионов железа и т. д. Регулируя кислотность раствора при осаждении сульфидов, можно количественно разделять катионы, принадлежащие к одной и той же аналитической группе. Так, в присутствии уксусной кислоты цинк можно количественно отделить от железа, в присутствии 10 н. раствора НС1 — отделить мышьяк от олова и сурьмы и т. д. [c.121]


    Осаждение в виде сульфидов. Осаждение сероводородом из кислы растворов может служить для отделения платиновых металлов и золота от большинства других эл( ментов, исключая серебро, медь, кадмий, ртуть, индий, германий, олово, свинец, мышьяк, сурьму, висмут, молибден, селен, теллур и рений.  [c.412]

    Определение в виде сульфида ртути (II). Весовое определение ртути в виде сульфида ртути (И) является точным методом, но метод этот менее пригоден, чем предыдущий, так кай ртуть должна быть предварительно отделена от всех остальных элементов группы сероводорода, и если применяется метод Фольгарда, то й от элементов, осаждающихся сульфидом аммония. К этому надо добавить, что осадок сульфида ртути (II) увлекает с собой серу, которая должна быть удалена перед взвешиванием. Осаждение сульфида ртути (II) обработкой сульфосоли нитратом аммония протекает быстрее, чем прямое осаждение сероводородом в кислом растворе, и имеет те преимущества, что может проводиться в присутствии окислителей, например азотной кислоты, и дает возможность отделить от ртути серебро, свинец, висмут, мышьяк и сурьму. Метод этот не удается при анализе растворов, содержащих цинк, кадмий или медь, как указано выше (стр. 246). [c.249]

    При содержании сурьмы менее 0,1 мг ее лучше всего определять отгонкой в виде стибина Окраску, полученную при действии стибина /на полоску бумаги, пропитанной хлоридом ртути (П), сравнивают со стандартными окрасками, полученными при такой же обработке растворов, содержащих известные малые количества сурьмы. Мышьяк, сульфиды и фосфиды, также окрашивающие бумагу, пропитанную хлоридом ртути (II), должны отсутствовать. Мышьяк может быть отделен отгонкой его с соляной кислотой присутствия сульфидов и фосфидов легко избежать соответственной предварительной обработкой. [c.327]

    Разделение ионов в виде сульфидов. Сульфиды очень многих металлов труднорастворимы в воде. Эти свойства были использованы для разработки схемы систематического хода анализа катионов, которая была предложена более 100 лет назад известным русским химиком К. К- Клаусом, открывшим рутений. Эту схему называют сероводородный метод разделения и анализа ионов , она сохранилась с некоторыми изменениями и до настоящего времени. В табл. 26.8 представлены продукты взаимодействия катионов с сероводородом в кислой среде и с сульфидом аммония в аммиачной среде. Из этой таблицы видно, что в среде хлороводородной кислоты сероводород осаждает черные сульфиды серебра, ртути, свинца, меди, висмута, желтые сульфиды кадмия, мышьяка(И1) и (V), олова(1У), оранжево-красные сульфиды сурьмы(III) и (V) и коричневый сульфид олова (II). [c.557]


    Если кислотность раствора устанавливать более точно, а также использовать некоторые другие условия, можно разделить катионы, входящие в одну и ту же аналитическую группу. Так, например, осаждение сероводородом применяют для отделения цинка от железа. В среде уксусной кислоты или монохлоруксусной кислоты (в присутствии некоторого количества солей этих кислот) сернистый цинк количественно осаждается, а двухвалентное железо остается в растворе. В среде 10 н. соляной кислоты можно отделить мышьяк от олова и сурьмы. При pH, равном 5 или б, никель (в виде сульфида) отделяется от марганца и т. д. В ряде случаев для отделения катионов в виде сульфидов связывают некоторые катионы в комплексные соединения. Соответствующие примеры описаны в 23. [c.93]

    Метод основан на способности репия каталитически ускорять реакцию восстановления теллурата натрня до элементного теллура хлоридом олова (И). Выделяющийся теллур в присутствии защитного коллоида (желатины) окрашивает раствор в черно-коричневый цвет. Определение 0,1—0,001 мкг рения возможно в присутствии более 100 мкг следующих ионов меди, ртути, германия, олова, свинца, сурьмы, висмута, мышьяка, рубидия и осмия. Мешающее влияние молибдена и вольфрама устраняют связыванием их винной кислотой. Метод может быть применен для определения рения в горных породах после выделения его в виде сульфида. [c.376]

    Приступая к анализу, следует иметь в виду, что присутствие в растворе некоторых анионов мешает нормальному проведению хода анализа по описанной ниже схеме. Так, например, сильные окислители препятствуют осаждению элементов II группы сероводородом, окисляя его. Соли слабых кислот мешают регулировать кислотность раствора (перед осаждением сероводородом). Большая концентрация циан-ионов препятствует выделению меди в виде сульфида вследствие образования комплексного соединения. По той же причине ие могут быть осаждены сульфиды олова (II), мышьяка (V) и сурьмы (V) при наличии в растворе фторидов. Фосфаты вызывают преждевременное осаждение щелочноземельных элементов, которые благодаря этому могут выпасть в осадок вместе с III группой. [c.68]

    Виктор [1329] отделял висмут и другие элементы от олова (при анализе технического олова) осаждением висмута сероводородом из тартрат-ного раствора. 20 г 99%-ного или 10 г 98%-ного олова растворяют при нагревании в 100 мл НС1 уд. в. 1,12. Для растворения остатка и окисления олова до четырехвалентного состояния прибавляют КСЮз и кипятят до полного исчезновения запаха хлора. К полученному раствору прибавляют 30 г винной кислоты и избыток N Нз и пропускают НгЗ. При этом Си, РЬ, Ре и В1 осаждаются в виде сульфидов, а сурьма и большая часть [c.73]

    При использовании газообразных восстановителей некоторые ионы восстанавливаются избирательно, а избыток восстановителя легко удаляется при кипячении раствора. Например, сернистый ангидрид восстанавливает в разбавленной серной кислоте железо (П1) до железа (И), ванадий (V) до ванадия (IV) и сурьму (V) до сурьмы (П1), в то время как соединения молибдена, вольфрама и урана в этих условиях не восстанавливаются. Это позволяет легко определять ванадий в присутствии молибдена. Аналогичное восстановление достигается и при использовании сероводорода дополнительным преимуществом является его способность осаждать многие ионы металла в виде сульфидов. [c.369]

    Большое распространение в заводских лабораториях имеет метод выделения меди тиосульфатом натрия из сернокислого или солянокислого-раствора. Реактив прибавляют небольшими порциями к кипящему раствору до его обесцвечивания (восстановление железа), а затем вводят небольшой избыток. Медь при этом выделяется в виде сульфида меди (I) вместе с серой. Кроме меди, тиосульфатом натрия полностью осаждаются серебро и висмут и частично мышьяк и сурьма. Катионы первых трех аналитических групп, а также и кадмий тиосульфатом не осаждаются (железо, если оно присутствует в больших количествах, частично сорбируется выпадающим осадком). [c.284]

    Для отделения германия от других элементов используются также методы, основанные на применении сероводорода и сульфидов щелочных металлов. Так как германий относится к подгруппе мышьяка сероводородной группы металлов, он может быть осажден сероводородом из кислых растворов, а затем отделен от элементов подгруппы меди обработкой сульфидного осадка сульфидами или полисульфидами щелочных металлов. Кроме того, в кислых растворах, содержащих фтористоводородную кислоту, германий ведет себя подобно олову, благодаря чему его можно отделять от мышьяка (III) и сурьмы (III), которые в этих условиях осаждаются сероводородом (стр. 88). Количественное осаждение германия в виде сульфида происходит значительно труднее, чем осаждение большинства других элементов сероводородной группы. Выделять его лучше всего, насыщая сероводородом холодный раствор, 6 н. по концентрации серной кислоты. Образующемуся при этом почти коллоидному осадку дают отстаиваться в течение 48 ч, закрыв колбу пробкой. Осадок сульфида германия следует промывать 6 н. серной кислотой, насыщенной сероводородом. [c.347]


    Для количественного определения сурьму осаждают обычно в виде сульфида, который взвешивают после высушивания в струе двуокиси углерода или после окисления его в четырехокись сурьмы,  [c.726]

    Растворимость сульфидов, образованных некоторыми катионами, отнесенными по схеме классического метода к различным аналитическим группам, близка. Это осложняет разделение катионов, затрудняет их обнаружение и ведет к полной или частичной потере, например, катионов цинка, олова, висмута, сурьмы. Полное осаждение сероводородом ионов V и IV аналитических групп в виде сульфидов и сернистых соединений и их разделение представляют очень трудную задачу. [c.310]

    Пользуясь сероводородом как осадителем, можно выделить в виде сульфидов металлов целую группу катионов, сходных по их реакциям с сероводородом. Поэтому сероводород называют групповым реагентом. Групповыми реагентами являются также карбонат аммония, сульфид аммония, сульфид натрия. Групповым называют такой реагент, который осаждает апределенные ионы, не осаждая при этом других ионов, присутствующих в том же растворе, и наоборот, переводит в раствор определенные ионы, находящиеся в осадке, не затрагивая при этом других ионов осадка, например, карбонат аммония осаждает катионы кальция, стронция, бария, но не осаждает катионов щелочных металлов. Раствор сульфида натрия растворяет сульфиды мышьяка, сурьмы, олова, ртути и не растворяет сульфидов меди, кадмия, висмута, свинца. Эти особенности групповых реагентов наиболее полно использованы при разработке систематического хода анализа катионов по сероводородному методу анализа, в котором все катионы подразделяют на пять групп (табл. 2). [c.11]

    Отделение мышьяка и ртути. Осадок обрабатывают несколькими каплями концентрированной НС1, нагревают смесь на водяной бане и центрифугируют. Осадок содержит мышьяк и ртуть в виде сульфидов и свободную серу. Центрифугат содержит комплексные анионы олова и сурьмы, анализ которых был описан выше. [c.267]

    Превалирующими катодной и анодной реакциями при рафинировании серебра являются Ag е Ag+. Из-за малого перенапряжения при не слишком высоких плотностях тока эти реакции протекают при потенциалах, близких к равновесному. В соответствии с этим возможные примеси — золото, платиноиды, медь, сурьма, висмут, олово, селен, теллур, а также незначительные количества цинка, кадмия, никеля, железа — ведут себя в растворах рафинирования серебра в соответствии с их потенциалами и химическими свойствами. В шламе концентрируются золото и платиноиды, сурьма, висмут и олово в виде гидроокисей и метаоловян-ной кислоты, сера, селен и теллур в виде сульфидов, селенидов и теллуридов металлов. В растворе накапливается медь, которой в рафинируемом металле может быть довольно много (в сплаве д оре до 2—3%), а также все более электроотрицательные металлы. Контролирующей примесью является медь, допустимое содержание которой 30—40 г/л. При превышении этого количества часть электролита отбирают и заменяют свежим серебро из отработанного раствора извлекают методом цементации медьЕо. [c.316]

    Штейны и щлаки используют для получения меди и цинка, а черновой свинец подвергают очистке, прежде всего от меди, добавлением серы, в результате чего медь удаляется в виде сульфида. Затем перекачивают свинец через слой расплавленной щелочи и поваренной соли с примесью селитры при этом удаляются мышьяк, сурьма и олово, которые переходят в щелочной сплав в виде арсенатов, антимонатов и станнатов. [c.207]

    Нахождение в природе. Мышьяк, сурьма и висмут находятся в земной коре в окисленном состоянии главным образом в виде сульфидов висмут иногда встречается и в свободном виде, так как он является пассивным металлом (для В1—Зе = В1 + Е°= = +0,226 В ). Несмотря на небольшое содержание этих элементов в земной коре, мышьяк входит в состав более чем 120 минералов, сурьма — 100, а висмут — 70 минералов. Основное промышленное значение имеют такие минералы, как арсенопирит РеЛзЗ, главный компонент руды — мышьякового колчедана стибнит ЗЬгЗз (или антимонит ) — основа сурьмяного блеска бисму-т и н и т 61283 — основа висмутового блеска. [c.267]

    Катионы Sn + образуют белый оксалат олова (II) Sn( 204), растворимый в избытке оксалатов, получается комплексный ион [Sn ( 204)2] — диоксалатостаннит. Из раствора этого комплекса не осаждается сульфид олова (II) SnS сероводородом. В этих условиях сурьма осаждается в виде сульфида ЗЬ Зз, что позволяет разделить олово (II) и сурьму (III) даже количественно. [c.197]

    Хотя сурьма является обычным, не редким элементом, однако содержание ее в земной коре меньше, чем мышьяка, и она не так широко рассеяна в горных породах, как мышьяк. Сурьма встречается в самородном виде, но чаш е в виде Сульфида, стибнита SbgOs, а также в различных антимонидах и сульфоантимонидах тяжелых металлов и в окисях вторичного происхождения. Сурьма в отличие от мышьяка имеет большое применение в металлургии и часто входит в состав сплавов цветных металлов. [c.317]

    Для отделения мышьяка, сурьмы, меди, свинца, ртути, кадмия и других ионов от олова используют осаждение их в виде сульфидов в присутствии фто-рид-ионов, которые связывают олово. При фотометрическом определении кобальта в виде хлоридного или роданидного комплексов вредное влияние железа (П1) устраняют, связывая его в прючный фторидный комплекс. [c.267]

    Очистка растворов. От вредных примесей очистка растворов основана на том, что их удаляют из растворов главным образом в виде легко отделяемых осадков. Основная очистка производится в виде труднорастворимых гидроксидов. В отдельных случаях осаждение гидроксидов осуществляют так, чтобы свежеосажденные гидроксиды сорбировали трудноотделяемые из раствора примеси, мышьяка, сурьмы, фосфора. Оставшиеся в растворе после гидрок сидной очистки примеси очищают в виде сульфидов. [c.298]

    При ана.чизе материалов, содержащих заметные количества сурьмы, олова и железа, необходимо последние отделить от висмута. Для этого растворяют осадок двуокиси марганца в разбавленной соляной кислоте в присутствии перекиси водорода. После удаления избытка перекиси водорода кипячением раствор фильтруют, создают концентрацию кислоты 0,5 н. и пропускают сероводород. Осадок отфильтровывают и промывают разбавленной соляной кислотой с сероводородом. Осадок обрабатывают многосернистым аммонием для удаления олова и сурьмы. Осадок сульфида висмута растворяют в разбавленной азотной кислоте и раствор фильтруют через первоначальный фильтр. Из полученного раствора осаждают висмут один раз при помощи окиси цинка без добавления нитрита натрия. Определение висмута заканчивают в виде BiO l, как описано выше. [c.33]

    В эту группу входят катионы, осаждаемые сернистым водородом в виде сульфидов из растворов, содержащих 0,ЗЛ кислоту. Она включает ртуть(2), свинец, медь, виомут, кадмий, мышьяк, сурьму и олово. Катионы серебра и ртути(1) также осаждаются при пропускании через их растворы сероводорода при указанной концентрации кислоты, но они уже были отделены в виде хлоридов в группе I. Свинец всегда находят в этой группе, потому что его выделение в виде хлорида неполное, если только не поддерживать надлежащую концентрацию соляной кислоты и не добавлять спирта. [c.137]

    Определение микрограммовых количеств примесей цинка в солях сурьмы, свинца и олова без предварительного его концентрирования и удаления из раствора металлов этих солей не представляется возможным. Сульфид каЖого-либо металла как коллектор для концентрирования цинка в этом случае не может быть использован. Метод удаления сурьмы и олова возгонкой в виде хлоридов или бромидов также неприемлем. Отделение металлов названных солей из кислых растворов в виде сульфидов имеет недостатки, так как даже из 2 кислого раствора цинк частично захватывается осадком сульфида сурьмы. [c.271]

    Разделение и определение мышьяка, сурьмы и олова. Мышьяк, сурьма и олово обычно встречаются вместе в виде сульфидов — АззЗз, АзгЗз, ЗЬгЗз, ЗЬгЗб, 8п5 и ЗпЗг. Поэтому интересно рассмотреть, во-первых, разделение этих элементов и, во-вторых, индивидуальное определение каждого из них. [c.339]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    В обычных случаях ход отделения следующий. Приготовляют кислый, содержащий мышьяк (V) раствор, свободный от указанных выше мешающих элементов. Если мышьяк был отогнан в вйде хлорида мышьяка (III),, то сперва осаждают его в виде сульфида (стр. 309), растворяют осадок в малом количестве раствора едкого натра при помрщи окислителя, например перекиси водорода, подкисляют раствор азотной кислотой и кипятят до малого объема. Затем разбавляют до 100 мл водой, если присутствует не более 0,1 г Мышьяка, и прибавляют 25 мл магнезиальной смеси (стр. 66). В присутствии олова, германия или сурьмы прибавляют 3 г-лимонной или винной кислоты и 50 мл магнезиальной смеси. Затем приливают раствор амйиака по каплям и при постоянном перемешивании, [c.306]

    Охфеделение превращением мышьяка в арсенат серебра и титрованием методом Фольгарда. Осаждение мышьяка (V) в виде арсената серебра, растворение последнего в азотной кислоте и титрование серебра в полученном растворе методом Фольгарда является очень хорошим споеобом определения мышьяка, особенно пригодным для применения после отгонки мышьяка е соляной кислотой и отделения его в виде сульфида. Германий и те малые количества сурьмы и олова, которые могут в этом случае сопровождать мышьяк, определению не мешают. Этот метод не может применяться для анализа веществ неизвестного качественного состава, так как имеется болыАе число анионов, также осаждающихся в виде солей серебра, например фосфат-, ванадат-, молибДат- и хро мат-йоны. Следует избегать большого избытка аммонийных и натриевых солей. [c.310]

    Из известных методов отделения сурьмы важнейшие основаны на свойствах ее сульфида. Так, сурьма отделяется от элементов, не входяш,их в группу сероводорода, осаждением сероводородом в кислом растворе стр. 83) и от элементов группы меди — растворением сульфида сурьмы в ш елочном растворе (стр. 87). Далее, сурьму можно отделить от мышьяка — осаждением очень мало растворимого сульфида последнего в сильно солянокислом растворе (стр. 305) от олова и германия — осаждением сероводородом в растворе, содержаш,ем фтористоводородную кислоту стр. 89), и от олова — осаждением сероводородом в ш авелевокислом или виннокислом растворе (стр. 89). Из всех этих методов отделения наиболее важным является отделение мышьяка в сильно солянокислом растворе, так как мышьяк во всех методах мешает определению сурьМы. Мышьяк можно отделить как в виде сульфида мышьяка (III), так и в виде сульфида мышьяка (V) (стр. 309), и отделение может быть проведено прямо в кислом растворе анализируемого вещества или поспе совместного осаждения сурьмы и мышьяка в виде сульфидов и растворения их в кислоте. [c.321]

    Так как сурьма- редко определяется взвешиванием в виде сульфида, то ее отделение (вместе с мышьяком) от олова (IV) осаждением сероводородом в щ авелевокислом растворе теперь применяется редко, за исключением того случая, когда необходимо предварительное отделение сурьмы в виде сульфида, а содержание олова настолько велико, что оно причинит много неудобств нри дальнейшем определении, если осядет вместе с сурьмой. Даже при наилучших условиях полное отделение сурьмы от олова осаждением сероводородом является трудной операцией, и осадок сурьмы, кроме того, загрязняется мышьяком, молибденом и, вероятно, многими другими элементами.  [c.321]

    По-видимому, наиболее точным методом определения сурьмы, когда количество ее превышает несколько миллиграммов, является объемный метод, в котором сурьма (И1) титруется до сурьмы (V) в серно-солянокислом растворе раствором перманганата. Положительной стороной этого метода является то, что после титрования сурьмы тот же раствор может быть использован для иодометрического определения олова (стр. 338). Весовые методы определения сурьмы в виде сульфида сурьмы (И1) ЗЬзЗд или четырехокиси сурьмы SbgO менее удовлетворительны их целесообразно применять лишь в тех случаях, когда содержание сурьмы настолько мало, что ошибки титрования становятся ощутимыми. Очень малые количества сурьмы (0,1 мг и менее) лучше всего определять выделением сурьмы в виде сурьмянистого водорода (стибина) и сравнением окраски, полученной нри действии этого газа на полоску бумаги, пропитанную хлоридом ртути (II), со стандартной шкалой окрасок [c.324]

    Присутствие ванадия не мешает, если сурьма перед определением была предварительно выделена в виде сульфида. Однако наличие ванадия отразится на результате титрования, если анализируемое вещество было прямо растворено в серной кислоте и затем обработано сернистой кислотой для перевода сурьмы в трехвалентпое состояние. Желательно отсутствие железа, хотя малые его количества не подвергаются значительному восстановлению при непродолжительной обработке сернистой кислотой в горячем растворе концентрированной серной кислоты. Если при предварительной обработке выделилось большое количество сульфата свинца, то результат определения сурьмы обычно получается понин енным. Этого. можно избежать, так же как и ошибок, связанных с присутствием мышьяка и других элементов, проводя отгонку сурьмы, как описано на стр. 321. Несколько менее эффективной обработкой является добавление соляной кислоты, осторожное нагревание до растворения сульфата свинца и разбавление водой. Последующее осаждение хлорида свинца значения не имеет. , [c.325]

    Определение в виде сульфида сурьмы (III). Из весовых методов определения сурьмы на иболее удовлетворительным является ее взвешивание в виде SbjSs после осаждения и высушивания осадка Осажденный сульфид может содержать как трехвалентпую, так и пятивалентную сурьму присутствие серы не мешает. Но применимость метода ограничена тем, что недопустимо присутствие других элементов, осаждаемых сероврдородом в кислом растворе, и тем, что сульфид сурьмы приходится высушивать и затем прокаливать при 280—300° С в атмосфере СОа- - [c.326]

    Определение в виде четырехбкиси сурьмы. Вместо взвешивания сурьмы в виде сульфида сурьмы (JII) методом, описанным выше, влажный сульфид сурьмы можно растворить и после выпаривания раствора нро- калить и взвесить в виде четырехокиси сурьмы SbgO . Этот метод проще в выполнении, чем первый, но при недостаточно тщательной работе он может привести к большим ошибкам. Четырехокись сурьмы очень легко [c.326]

    Характерным для сернистых соединений является очень значительное увеличе- иже их устойчивости в направлении от азота к висмуту. Сернистые соединения азота при нагревании вспыхивают сернистые соединения фосфора в отсутствие воздуха перегоняются без разложения, но на воздухе воспламеняются уже при умеренном нагревании. Значительно устойчивее сульфиды мышьяка, сурьмы и висмута, которые вследствие этого нередко встречаются в природе. Сурьма и висмут даже распространены в природе главным образом в виде сульфидов. Сернистые соединения азота щж гидролизе выделяют аммиак и образуют кислородные кислоты серы. Напротив, при гидролизе сульфидов j o gSopa каряду с кислородными кислотами фосфора образуется сероводород. Это показывает, Что в сульфидах азота отрицательный заряд имеет азот, в сульфидах же фосфора, наоборот, сера. Как следует из способов образования, последнее справедливо также и для сульфидов мышьяка, сурьмы и висмута, которые вследствие их крайней нерастворИмос1и не разлагаются ни водой, ни разбавленными кислотами. [c.629]

    Содержание Аз, 5Ь и В1 в земной коре невелико этп элементы встречаются преимущественно в виде сульфидов АвгЗз — аурипигмент, ЗЬгЗз — сурьмяный блеск, В125з — висмутовый блеск. В свободном состоянии мышьяк, сурьму и висмут получают из сернистых руд прокаливанием на воздухе с последующим восстановлением полученных оксидов углем  [c.265]

    Гравиметрически кадмий обычно определяют в виде сульфида, осаждая его сероводородом и удаляя мышьяк, сурьму и олово при помощи аммиака. Цинковые руды растворяют в царской водке, а нерастворимый остаток удаляют фильтрованием. Фильтрат разбавляют по крайней мере в 10 раз по отношению к его первоначальному объему. Сульфид цинка удаляют соляной кислотой. В некоторых случаях кадмий удобнее определять электролитически с использованием в качестве электролита раствор цианида калия. К. Е. Мур и Т. А. Робинсон [49] показали, что реакция кадмия с 1-фенил-тетразолон-5-тионом дает легко фильтруемый осадок, который можно высушить при 100° С без разложения. Несмотря на то что реагент не совсем избирателен, высокая чувствительность реакции кадмия позволяет использовать метод для гравиметрического определения (1 мг осадка эквивалентен 0,2408 мг кадмия). [c.120]

    Отделив осадок, пропускают через кислый раствор газообразный HoS. При этом ионы 2-й подгруппы IV группы и ионы группы осаждаются в виде сульфидов— uS, dS, BijSg, (PbS), HgS, As o, SboSg, Sb,Sj, SnS.j. Для отделения ионов V группы ссадок обрабатывают Na,S. При этом ионы V группы переходят в раствор [в виде тиосолей ртути (II), мышьяка, сурьмы, и олова (IV)], тогда как сульфиды катионов IV группы остаются в осадке. [c.32]


Смотреть страницы где упоминается термин Сурьма в виде сульфида: [c.425]    [c.421]    [c.192]    [c.439]    [c.215]    [c.309]    [c.322]    [c.492]    [c.357]    [c.24]   
Практическое руководство по неорганическому анализу (1966) -- [ c.325 , c.326 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.295 , c.297 ]




ПОИСК





Смотрите так же термины и статьи:

Сульфиды в виде

Сурьма сульфиды



© 2025 chem21.info Реклама на сайте