Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

При значительном содержании свинца или меди

    Коэффициент теплопроводности твердых тел. Коэффициенты теплопроводности твердых те/[ значительно разнятся друг от друга. Так, например, для некоторых металлов, применяемых в химическом аппарато-строении, А имеет следующие средние значения (в ккал м-час °Су. медь 330 алюминий 175 чугун 54 углеродистая сталь 40 свинец 30 нержавеющая сталь 20. Теплопроводность металлов сильно зависит от их состава и содержания примесей. [c.282]


    Различные примеси, обычно сопутствующие таллию, например цинк, кадмий, медь, свинец в количествах, значительно превышающих содержание таллия, не сказываются на результатах титрования. Впрочем, ожидать присутствия больших количеств свинца в титруемом растворе не приходится, поскольку растворы применяются сернокислые. [c.311]

    Черновые металлы — некоторые цветные металлы, получаемые (при плавке руд) со значительным содержанием примесей (иапр., черновая медь, свинец, цинк). При дальнейшей очистке (рафинировании) примеси удаляются. [c.154]

    Наибольшее ускорение выжига кокса в начале регенерации наблюдается на образцах, содержащих хром. За первые 25 мин на образце катализатора, содержащем 0,8 вес. % металла, сгорает 84 вес. % отложенного кокса, в то время как на исходном катализаторе за это же время сгорает только 52 вес. % кокса. С уменьшением содержания хрома в образце скорость выжига кокса заметно снижается. На образцах, содержащих ванадий, медь, молибден, доля сгоревшего кокса в начальный момент времени также значительно выше, чем на исходном катализаторе, но несколько меньше, чем на образцах, содержащих хром. Так, при примерно таком же количестве металлов за первые 25 мин выгорает только 70—74% отложенного кокса. При добавлении железа, никеля и кобальта скорость регенерации исходного катализатора мало изменяется. Так, при содержании 0,8 вес. % железа за первые 25 мин сгорает только 66% отложенного кокса, а на образцах, содержащих 0,48— 0,50 вес. % никеля и кобальта, за то же время сгорает 55% кокса при регенерации исходного образца катализатора сгорает 52% кокса. Свинец не влияет на регенерацию катализатора. [c.166]

    По содержанию в земной коре (0,6%) титан относится к довольно распространенным металлам. Он более распространен, чем медь, свинец, цинк. Большая рассеянность титана в земной коре и значительные трудности выделения из титановых руд обусловили малое его использование в качестве металла. Однако за последние 15—25 лет производство титана выросло до нескольких десятков тысяч тонн в год, главным образом в США и Англии, и продолжает расти. [c.326]

    Отходы, обычно колошниковая пыль плавильных печей и (или) осадки, образующиеся при очистке и содержащие медь и такие токсичные элементы как мышьяк, Висмут, свинец, сурьму и кадмий, подвергают реакции в автоклаве при повышенном давлении кислорода, с добавлением или без добавления серной кислоты. Образующийся раствор с высоким содержанием меди и все еще содержащий значительные количества мышьяка (от 0,5 до 2,0 г/л) направляют для высаживания меди на металлическом железе. При этом в раствор переходят ионы железа и значительно снижается остаточное содержание токсичных компонентов. Довольно неожиданно, что при этом не происходит выделения ядовитого газа арсина. [c.117]


    Как видно по данным табл. 11, из топливных фракций нефтяными кислотами богаты только керосино-газойлевые, т. е. фракции утяжеленных сортов реактивных топлив и дизельных топлив. Содержание кислот в товарных топливах значительно меньше, так как дистилляты очищают щелочью для удаления этих кислот (см. табл. 6), Наличие значительных количеств кислот или их солей (мыл) в топливах приводит к повышенной коррозии некоторых металлов либо к образованию осадков на фильтрах или деталях двигателей. Например, коррозия металлов нафтеновыми кислотами газойля (12 недель) при комнатной температуре составляет от 1,5—4 (железо, олово, медь) до 60—146 мг/м (цинк, свинец) [72]. Однако достаточно основательных данных о коррозионной агрессивности нефтяных кислот в топливах в зависимости от их количества (т. е. от кислотности топлива) не имеется. [c.35]

    Тяжелые металлы, являющиеся сильными ядами катализатора- крекинга (например, никель), и щелочноземельные металлы весьма умеренно ускоряют регенерацию катализатора. В присутствии щелочных металлов скорость горения кокса значительно возрастает (причем обратно пропорционально их молекулярному весу). Так, при содержании в катализаторе 1,0—1,5 вес. % лития или натрия продолжительность регенерации сокращается в 2,0—2,5 раза. Наибольшее ускорение регенерации достигается при внесении металлов, активирующих в небольших концентрациях катализатор крекинга (хром, ванадий, молибден и др.). По степени убывания воздействия на скорость окисления кокса в кинетической области испытанные нами металлы можно расположить в следующий ряд хром > ванадий > литий > молибден, медь > натрий > железо, кобальт > никель, бериллий, магний, кальций, стронций > калий > цезий > свинец. [c.43]

    Определение с тиомочевиной Несколько большие количества висмута (от ОД до 4 мг) могут быть определены фотометрически в разбавленном азотнокислом растворе добавлением тиомочевины и измерением свето-ногдощения образовавшегося окрашенного в желтый цвет комплексного соединения при длине волны света 425 ммк. Сурьма, палладий, осмий и рутений также образуют с тиомочевиной в кислом растворе окрашенные комплексные соединения- . Добавление фтористоводородной кислоты предупреждает образование окрашенного соединения сурьмы серебро, ртуть, свинец, медь, кадмий и цинк образуют белые осадки, когда присутствуют в значительных количества если же содержание этих элементов невелико, то ни осадков, ни окрашивания раствора не получается. Железо, при содержании его, превышаюш ем 0,1 мг в 50 мл, должно быть удалено или восстановлено до двухвалентного состояния . Селен и теллур мешают определению [c.278]

    Современная техника предъявляет большие требования к чистоте материалов, в частности металлов. В цветной металлургии для очистки металлов от примесей широко применяют электролиз с растворимым анодом. Электролитическому рафинированию подвергают железо, медь, серебро, золото, свинец, олово, никель и другие металлы. Например, медь рафинируют следующим образом. В электролизер, заполненный раствором сернокислой меди, подкисленной серной кислотой, помещаются аноды из черновой меди (предварительно подвергнутой горячему рафинированию, при котором окисляется большая часть примесей). Между ними подвешивают катоды из тонких листов тщательно очищенной меди. Напряжение на ванне поддерживают в пределах 0,20—0,40 в, так чтобы при прохождении тока медь, а также примеси с более низким потенциалом, чем у меди (N1, Ре, 2п и др.), окислялись на аноде и переходили в раствор. Остальные примеси с более высокими потенциалами по сравнению с потенциалом меди не окисляются и ыпадают в виде осадка на дно ванны. Это анодный шлам. Он идет на переработку для извлечения золота, серебра, селена, теллура, что в значительной степени оправдывает большие затраты электроэнергии на рафинирование меди. На катоде восстанавливаются только ионы Сц2. Содержание Си в катодной меди достигает 99,98%, а в особых условиях—99,995%. [c.214]

    Из всех неметаллических элементов в наибольшем количестве получают углерод, что связано с добычей и потреблением каменного угля значительно развито производство графита, алмазов и бриллиантов. Из металлов наиболее высоким уровнем производства характеризуется железо. Его годовое производство более чем в 50 раз превышает производство алюминия, занимающего второе место. Далее следует медь, цинк, свинец, никель, магний. В незначительных количествах производятся теллур, гафний, платина, индий, галлий, характеризующиеся низким содержанием в земной коре. Однако эти металлы имеют важное техническое значение и потребность в них возрастает. [c.29]

    Определению мешают металлы, образующие нерастворимые гексацианоферраты(II) медь, кадмий, кобальт, никель и мар-, ганец. Медь надо предварительно удалить содержание других металлов обычно значительно уступает содержанию цинка, поэтому ими можно или совсем пренебречь, или ввести соответствующие поправки, определив их отдельно. Свинец в условиях определения осаждается в виде сульфата и не мешает. Мешающее влияние железа учтено в ходе анализа — оно устраняется добавлением пирофосфата. [c.168]


    При гидрометаллургической переработке вельц-окис-лов и возгонов на свинцово-цинковых заводах получают свинцовые кеки, содержащие свинец, цинк, кадмий и медь. Кроме цветных металлов, в них содержится значительное количество редких элементов, в частности содержание индия иногда достигает 500 г/т. Цветные и редкие металлы находятся в соединениях, трудно растворимых в разбавленной серной кислоте, и при кислом выщелачивании в раствор не извлекаются. [c.150]

    Что же касается ограничений, то платина легко растворяется в царской водке, а также в смесях хлоридов с окислителями. При повышенных температурах она растворяется также в расплавах оксидов щелочных металлов, в пероксидах и до некоторой степени в гидроксидах. При сильном нагревании она легко сплавляется с такими металлами, как золото, серебро, медь, висмут, свинец и цинк. Из-за склонности к образованию сплавов следует избегать контакта платины с другими металлами и их легко восстанавливающимися оксидами. Платина медленно растворяется при контакте с расплавленными нитратами, цианидами, хлоридами щелочных и щелочноземельных металлов при температуре свыше 1000 °С при температуре свыше 700° металл слегка реагирует с сероводородом. Поверхность платины подвержена воздействию аммиака, хлора, летучих хлоридов, диоксида серы и газов с высоким содержанием углерода. При температуре красного каления мышьяк, сурьма и фосфор легко реагирует с платиной, придавая ей хрупкость. Такое же действие на платину оказывают при высокой температуре селен, теллур и в меньшей степени сера и углерод. Наконец, при длительном нагревании при температуре выше 1500°С следует ожидать значительной потери массы вследствие улетучивания металла. [c.294]

    В природных электролитах возможно присутствие таких микрокомпонентов, как йод, бром, медь, цинк, свинец и др. Содержание их незначительно— около 10 —10 г/л. При концентрации активного хлора в электролитическом гипохлорите 1—5 г/л и дозе хлора на обеззараживание 1—5 мг/л количество вводимых микрокомпонентов уменьшается в тысячи раз и будет составлять всего 10 —10 мг/л, т.е. значительно ниже максимально допустимого для питьевой воды уровня. Однако в каждом конкретном случае следует учитывать химический состав и содержание микрокомпонентов в природных электролитах, а для возможности использования гипохлорита натрия, полученного из минерализованных и морских вод, иметь разрешение санитарных органов. [c.24]

    Было установлено, что исследованные нефти по количественному содержанию в них микроэлементов значительно превосходят все аналогичные третичные нефти Советского Союза. Особенно это отчетливо видно на примере таких характерных элементов, как ванадий, хром, молибден, железо, никель, медь, свинец. Весьма примечательно и то, что в них отношение ванадий никель больше единицы, в то время как во всех нефтях этого возраста эта величина меньше единицы. [c.151]

    В настоящее время в качестве антифрикционного слоя вкладышей коленчатого вала применяют свинцовую бронзу, сплав СОС-6-6 и др. Эти материалы имеют большую прочность, твердость и термоустойчивость, чем оловянистые баббиты. Недостатком их является большая склонность к коррозии, обусловленная высоким содержанием в них свинца. Состав и структура сплава в значительной степени определяют его подверженность коррозии [46, с. 198—204]. Свинцовистая бронза, в которую входит около 30% свинца, подвергается коррозии сильнее, чем другие сплавы, содержащие значительно большее количество свинца. Так, сплав СОС-6-6 (88% свинца) корродирует в несколько раз меньше, так как входящие в него олово и сурьма тормозят процессы коррозии. В свинцовистой бронзе свинец расположен в виде включений в медном каркасе. Медь, как известно, является катализатором окисления. Коррозия подшипниковых сплавов осуществляется под влиянием органических кислот, являющихся продуктом старения масла, и минеральных кислот, образующихся в результате процессов сгорания топлив. В то же время поверхности подшипников, изготовленных из цветных сплавов, являются катализаторами процессов окисления. В состав антикоррозионных присадок входят сера и фосфор, которые, взаимодействуя с металлами, образуют на поверхностях прочные фосфидные или сульфидные пленки, защищающие антифрикционный слой подшипников от агрессивных соединений. Одновременно пленка пассивирует поверхности сплавов цветных металлов. [c.72]

    Следует отметить, что свинец практически не оказывает влияния на результаты анализа, никель и кобальт влияют значительно больше, медь же может присутствовать лишь в очень небольших количествах (примерно в удвоенном по сравнению с цинком количестве). При увеличении количества добавляемого тиосульфата допустимое предельное содержание этих металлов может быть увеличено, однако при этом уменьшается чувствительность реакций на цинк. [c.851]

    Металлы — мышьяк, свинец, медь, содержание которых поел гпдроочистки очень невелико, накапливаются на катализатор риформинга необратимо. Вступая во взаимодействие с платиной металлы нарушают гидрируюш,ую-дегидрирующую функцию ката лизатора. Накопление металлических примесей приводит к посте пенному старению катализатора. Быстрое отравление катализатор может пметь место при переходе на сырье вторичного происхождения при использовании бензинов, полученных из ловушечной нефти где концентрация металлических примесей вследствие случайны причин может оказаться весьма значительной. Катализатор, отра вленный металлами, весьма быстро закоксовывается и после регене рации не восстанавливает своей активности. [c.26]

    Добавление тяжелых металлов (никель, медь, кобальт) приводит к резкому увеличению образования кокса. Так, при введении 0,5—0,7% этих металлов выход кокса возрастает в 3,2—3,5 раза. При значительном содержании в катализаторе ванадия, молибдена, хрома и свинца, достигающем 0,5—0,7%, коксосодержание также увеличивается (в 1,3—1,5 раза), а при наличии 0,02—0,003% ванадия выход кокса в 1,25 раза меньше, чем в присутствии исходного катализатора. По уменьшению влияния на образование кокса металлы располагаются в следующем порядке никель, медь > кобальт > молибден, ванадий > железо, хром > свинец > бериллий > магний > кальций > стронций > >литий > натрий > калий > цезий. [c.53]

    При повышенном содержании меди в свинцовых концентратах иногда в агломерате оставляют до 2 % S, чтобы при плавке медь перевести в штейн. Одащко образование штейна при плавке является нежелательным, так как для переработки сложного по составу полиметаллического штейна с целью извлечения меди, свинца и благородных металлов требуются сложные дополнительные переделы. Особенно нежелательно образование штейна при высоком содержании в свинцовых концентратах цинка. На практике свинцовые концентраты, значительно загрязненные одновременно медью и цинком, стараются как можно полнее обжечь, чтобы при плавке цинк максимально перешел в шлак, а медь — в черновой свинец. [c.159]

    Чисто белый осадок сернистого цинка получается легко, если осаждение производить из муравьинокислого раствора по способу Натре. Kinder разработал этот способ для анализа железных j уд. В последних наряду с цинком часто содержится также и свинец, который предварительно осаждают серной кислотой, так что приходится работать с сернокислыми растворам . Учитывая присутствие свинца, поступают следующим образом 5 г руды взмучивают с небольшим количеством воды в большой, закрытой фарфоровой чашке и растворяют в соляной кислоте, к которой прибавлено 20—25 мл разведенной серной кислоты (100 мл серной кислоты, плотн. 1,84, на 200 мл воды). Раствор выпаривают до выделения паров серной кислоты. По охлаждении остаток растворяют в воде и отфильтровывают осадок, содержащий сернокислый свинец. Фильтрат разбавляют до 300—400 мл, нагревают до 70°, насыщают сероводородом, фильтруют сернистую медь, если она окажется, приливают к фильтрату из под нее 25 мл раствора муравьинокислого аммония и 15 мл муравьиной кислоты . Если количество серной кислоты не превышало указанного, то при наличии цинка последний выпадает в виде сернистого красивыми почти белыми хлопьями. Если серной кислоты было прибавлено значительно больше указанного, то перед прибавлением муравьинокислого аммония большую часть ее нейтрализуют-аммиаком. При значительном содержании цинка рекомендуется еще некоторое время пропускать сероводород в нагретый раствор. Если полученный сернистый цинк красивого белого цвета, то после промывания слабо муравьинокислой сероводородной водой его раство яют в разбавленной соляной кислоте и по удалении избытка кислоты выпариванием осаждают углекислым натрием и взвешивают в виде окиси цинка можно также непосредственно взвешивать в виде сернистого цинка. Если после первого осаждения сернистый цинк получился темный, то солянокислый раствор сернистых металлов нейтрализуют аммиаком до щелочной реакции, нагревают, подкисляют муравьиной кислотой, прибавляют еще 15 мл свободной муравьиной кислоты и осаждают сероводородом, как указано выше. [c.43]

    В процессе крекинга тяжелого углеводородного сырья на катализаторе отлагаются металлы, которые могут влиять на закономерности окисления кокса в регенераторе. Детально это исследовано авторами работы [94]. Установлено, что при добавлении в катализатор различных металлов качественный характер регенерации катализатора не изменяется. Однако металлы, нанесенные на катализатор, интенсифицируют выжиг кокса в начальный период по сравнению со скоростью выжига исходного ка (нлизатора. Наибольшее ускорение наблюдается на образцах, содержащих хром. За первые 25 мин на образце катализатора, содержащем 0,8% (масс.) Сг, сгорает 84% отложенного кокса, в то время как на исходном катализаторе за это же время сгорает только 52% кокса. С уменьшением содержания хрома скорость выжига кокса заметно снижается. На образцах, содержащих ванадий, медь и молибден, доля сгоревшего кокса в начальный момент времени также значительно выше, чем на исходном катализаторе, но несколько меньше, чем на образцах, содержащих хром. Так, при примерно таком же содержании металлов за первые 25 мин выгорает только 70-74% отложенного кокса. При добавлении железа, никеля и кобальта скорость регенерации исходного катализатора мало изменяется. При содержании 0,8% (масс.) железа за первые 25 мин сгорает только 66% отложенного кокса, а на образцах, содержащих 0,48-0,50% (масс.) никеля и кобальта, за то же время сгорает 55% кокса при регенерации исходного образца катализатора сгорает 52% кокса. Свинец не влияет на регенерацию катализатора. [c.33]

    Антропогенные источники поступления в окружающую среду. Наиболее значительными источниками являются предприятия, сжигающие в процессе производства органические углеродные топлива (нефть, уголь, мазут и др.), плавящие медь, свинец, цинк. Т. и его соединения могут поступать в атмосферу в виде дымов, пылей, аэрозолей из воздуха производственных помещений различных отраслей промышленности, в воду водоемов в составе промышленных сточных вод. В процессе производства металлического Т. при плавлении содержание металла и его оксидов в воздушной среде рабочих помещений может достигать 0,18 мг/м при розливе наблюдалось содержание аэрозолей оксидов Т. в воздухе рабочей зоны в пределах 13— 17,4 мг/м . При получении солей Т. и их фасовке содержание пыли в производственных помещениях может достигать 0,136 и 0,354 мг/м . Получение металлического Т. и различных его солей, монокристаллов и различных кристаллических систем Т, сопровождалось загрязнением воздуха производственных помещений металлом в концентрациях 0,004—0,007 мг/м . Количество Т. в смывах со стен рабочих помещений, поверхностей оборудования достигало 12,5 мг/м , смыва с ладоней работающих—300—350 мг. В некоторых производствах, источником энергии в которых является уголь, люди получают внутрь до 150—180 нг/кг Т. в день (8аЬЫоп1 е1 а1.). Попадание Т. в продукты питания, питьевую воду может происходить в районах расположения медных, цинковых, кадмиевых рудников и других предприятий металлургической промышленности, в районах сельскохозяйственных угодий, где используются калийные удобрения. Так, в речной воде в окружности металлообрабатывающего предприятия концентрация Т. достигала 0,7— [c.239]

    Для определения в смазке содержания продуктов износа или иных примесей, попавших в нее во время работы смаз1 шаеМого механизма, эталоны готовят на основе свежей смазки. Многие металлы, представляющие интерес при анализе смазок в качестве продуктов износа (железо, алюминий, медь, свинец и др.), содержатся в свежих смазках в значительных количествах (табл. 54). Причем смазки одной марки, но разных партий сильно отличаются друг от друга. Поэтому для упрощения анализа и сокращения ошибок желательно готовить эталоны на основе смазки, взятой из той же партии, что и объект анализа. В крайнем случае, если почему-либо невозможно приготовить эталоны на основе исследуемой смазки, необходимо анализировать свежую смазку. Иначе Могут возникнуть серьезные ошибки. [c.187]

    Чистый никель—металл серебристобелого цвета с сильным блеском. Никель обладает значительной тугоплавкостью, твердостью, легко поддается полировке. Примеси железа, кремния, меди и кобальта (в сумме до 1,0%) не влияют на механические свойства и химическую стойкость никеля, так как образуют с ним твердые растворы. Кобальт по свойствам близок к никелю, и поэтому его присутствие в количестве 0,2—0,9% (в зависимости от ссртности никеля) не влияет на качество металла. Наиболее вредными примесями в никеле являются сера и свинец, самые ничтожные количества которых вызывают красноломкость металла. Углерод при содержании более 0,10—0,15% выделяется в виде графита. [c.147]

    Осаждение гидроокиси бериллия в присутствии ЭДТА. Это один из лучших методов отделения бериллия. Бериллий—один из очень немногих элементов, осаждаемых аммиаком в присутствии ЭДТА. В растворе остаются алюминий, хром (П1), ванадий (V), если его немного, свинец, железо (1П), висмут, медь, кадмий, никель, кобальт, марганец, цинк. Фосфорная кислота мешает разделению, ее надо предварительно отделить. Титан осаждается. Если алюминий присутствует в количестве, значительно превышающем содержание бериллия, этот метод разделения следует предпочесть методу с оксихинолином. [c.570]


Смотреть страницы где упоминается термин При значительном содержании свинца или меди: [c.114]    [c.277]    [c.229]    [c.180]    [c.630]    [c.363]    [c.30]    [c.197]    [c.344]    [c.756]    [c.474]    [c.52]    [c.87]    [c.709]    [c.308]    [c.32]    [c.141]    [c.433]    [c.308]   
Смотреть главы в:

Химико-технические методы исследования -> При значительном содержании свинца или меди




ПОИСК





Смотрите так же термины и статьи:

Содержание меди



© 2024 chem21.info Реклама на сайте