Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействия вода белок

    Теплоемкость. Измерения удельной теплоемкости систем, содержащих белки, представляют особый интерес по нескольким причинам 1. Они отражают влияние сольватации неполярных участков в дополнение к гидратации других частей поверхности белка и поэтому могут рассматриваться как наиболее совершенная термодинамическая характеристика взаимодействий вода — белок. 2. Теплоемкость удобно измерять как в растворе, так и в твердых образцах, поэтому можно сопоставить результаты исследования теплоемкости этих двух групп образцов. [c.117]


    По нашему мнению, продолжительность жизни молекулы воды в гидратационном слое по порядку величины составляет 10 с, т. е. примерно в 100 раз больше, чем время, требуемое для молекулы воды, чтобы разорвать и снова образовать несколько водородных связей, которые ограничивают ее движение в чистом растворителе. Тем не менее это время достаточно мало, чтобы его можно было рассматривать как характеристическое время для движения молекул жидкости. Разъяснение данной точки зрения и другие аспекты динамики взаимодействий вода — белок и белок — вода — белок в растворах белков и являются предметом настоящей статьи. Ниже представлены данные и выводы, следующие из результатов использования очень эффективного экспериментального метода, который, не будучи уже новым, применяется только в нашей и еще очень немногих лабораториях. Авторы измерили зависимость скорости магнитной спин-решеточной релаксации ядер растворителя (воды) в растворах белка от величины магнитного поля. Этому методу дали сокращенное название ЯМР-д (дисперсия ядерной магнитной релаксации). Опыты по ЯМР-д показали, что на быстрое вращательное броуновское движение молекул растворителя (воды) накладывается в результате функционирования механизма взаимодействия (еще не вполне понятого) очень небольшая по величине компонента, которая имитирует намного более медленное вращательное движение молекул белка [6, 7]. Кроме того, в экспериментах по ЯМР-д измеряются усредненные свойства всех молекул растворителя, так что время жизни молекул воды в гидратационном слое выступает в качестве естественного параметра во многих моделях, которые объясняют эти данные. Можно добавить, что данные по ЯМР-д прямо указывают на довольно быстрое ориентационное броуновское движение. Поэтому появляется возможность изучения микроскопической вязкости растворителя вблизи белковой молекулы в широком диапазоне значений pH, в присутствии различных буферов и т. д., что не всегда удается сделать с помощью других методов. [c.162]

    Надо подчеркнуть, что, хотя нам предположительно известно происхождение члена А, причинный механизм однозначно не установлен. Безусловно, на этот счет не существует никакой теории [7]. Поэтому вопрос остается открытым. Тем не менее экспериментальные подходы и получаемые при этом данные сами по себе крайне полезны при исследовании взаимодействий вода — белок и белок — белок. [c.176]

    Присутствие в воде растворенного белка накладывает на быстрое броуновское движение растворителя-воды небольшую по величине, но измеримую компоненту, которая характеризует более медленное броуновское движение молекул белка. Это явление известно около 10 лет, и сначала его наблюдали как увеличение скорости магнитной релаксации протонов растворителя. С тех пор оно было изучено более глубоко путем исследования зависимости релаксации протонов и дейтронов растворителя от величины магнитного поля. Полученные данные несут необычайно богатую информацию о взаимодействиях вода— белок и белок—белок как в растворах, так и в суспензиях клеток. Однако природа лежащих в их основе взаимодействий растворитель—растворенное вещество остается весьма неясной. Для проверки концепции связанной воды, по которой ведется дискуссия, были проведены измерения на растворах белков в смешанном растворителе H2O/D2O. Данные этих измерений неожиданно указывают на взаимодействия между протонами белка и растворителя по механизму перекрестной релаксации. Эти последние результаты дают основание предположить, что интерпретация увеличивающейся информации о релаксационных измерениях образцов тканей нуждается в перепроверке, а возможно, и в новой интерпретации. [c.182]


    Моделирование взаимодействий вода — белок в кристалле белка [c.202]

    МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИИ ВОДА - БЕЛОК 211 [c.211]

    Г. Результаты. На рис. 11.2 показаны изменения средней энергии в расчете на одну молекулу и средние энергии взаимодействий вода — белок и вода — вода во время моделирования. Энергия уменьшалась в течение первых 30 000 шагов, поэтому первые 30 000 конфигураций были отброшены. Следующий набор из 50 000 конфигураций использовали в качестве статистической модели. Процент удачных перескоков молекул воды на первом этапе моделирования уменьшился и достиг при равновесии примерно 27о- Увеличение числа шагов до 80 000 потребовало 10 ч машинного времени на ЭВМ 370/165. [c.212]

    I — общая энергия 2 — энергия взаимодействия вода — вода 3 — энергия взаимодействия вода — белок. [c.213]

    Теоретический подход, реализованный в работах Стиллинджера (1), Карпласа (2) и Германса (11), становится все более и более продуктивным. Если говорить кратко, то энергии взаимодействия вода — вода относительно велики в случае несвязывающих взаимодействий, а взаимодействия вода — белок в грубом приближении сравнимы по величине, что делает поверх- [c.11]

    Измерение релаксационных свойств. Для изучения взаимодействий вода — белок в растворе и в гидратированных порошках был использован метод ЯМР [2]. Хилтон и др. [24] показали, что вода в частично гидратированных порошках лизоцима по своей подвижности лучше всего может быть охарактеризована как вязкая жидкость. С помощью спектров диэлектрической релаксации удается различить два типа воды один с временем релаксации около 0 с и другой, обнаруживаемый при степенях гидратации выше 0,3, с временем релаксации около 2-10-1 с, что близко к значению времени релаксации для объемной воды. Разрыв в плавном ходе изменения диэлектриче- [c.125]

    В настоящее время опыт опережает теорию. Предложенные модельные механизмы авторы смогли изложить на количественном уровне лишь в одном случае, а именно для зависимости реориентационного времени релаксации белка от концентрации последнего. Тем не менее в этой работе удалось прояснить различие между макроскопической и микроскопической вязкостью, измерить взаимодействия белок — белок внутри клеток и продемонстрировать перенос намагничиваемости от протонов белка к протонам растворителя. Все это согласуется с динамикой взаимодействий вода — белок, которая и явилась предметом обсуждения. [c.181]

    В. Применение метода к кристаллу ИТПЖБ. Система, подлежащая моделированию, состоит из атомов белка одной молекулы ИТПЖБ [5] и 140 молекул воды. Требуемое число молекул воды можно рассчитать и из объема кристалла, для которого энергия взаимодействия белок — вода равна нулю или отрицательна (пространство растворителя) [9], и из объема элементарной ячейки и плотности белка и воды. Взаимодействия вода — белок рассчитывались, как описано выше, а взаимодействия белок — белок — по методу, изложенному в работе [23]. Расчет взаимодействий между молекулами воды вели, используя модель 5Т2, введенную Раманом и Стиллинджером [11] при моделировании жидкой воды методом молекулярной динамики. [c.211]


Смотреть страницы где упоминается термин Взаимодействия вода белок: [c.161]    [c.209]    [c.214]    [c.41]   
Вода в полимерах (1984) -- [ c.21 , c.87 , c.149 , c.158 , c.181 , c.202 , c.202 , c.218 ]




ПОИСК





Смотрите так же термины и статьи:

БЕЛКИ И ВОДА



© 2025 chem21.info Реклама на сайте