Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Моделирование жидкой фазы

    Предпосылкой автоматизации непрерывно работающих пилотных ректификационных установок является решение задачи получения достоверных опытных данных, на основе которых можно разрабатывать промышленные установки. На рис. 362 показана экспериментальная установка, предназначенная для моделирования промышленного процесса перегонки сырой нефти. Установка работает непрерывно. Она состоит из одной основной и трех дополнительных колонн, предназначенных для отгонки низкокипящих фракций. Данная установка служит для разгонки многокомпонентных смесей, которые разделяются на четыре фракции. Кубовый продукт отбирается из куба основной колонны. Ректификационные колонны снабжены колпачковыми тарелками с отражательными перегородками для пара. По экспериментальным данным, получаемым при перегонке в этих колоннах, можно непосредственно разрабатывать установки больших размеров. Потоки паровой и жидкой фаз дозируются насосами / (см. разд. 8.6). Пульт управления 2 позволяет регулировать скорости выкипания, температуры обогревающих кожухов колонн и флегмовые числа. Регулятор вакуума 3 обеспечивает постоянную степень разрежения, а предохранительное реле 4 отключает установку, как только прекращается подача охлаждающей воды. Температуры на основных стадиях процесса непрерывно регистрируются электронным самописцем [17а]. [c.428]


    Апробация программы имитационного моделирования позволила выявить ряд закономерностей роста надмолекулярной структуры в жидкой фазе, которые имели хорошую корреляцию с экспериментом, Произведенные гео- [c.20]

    Ф а с м а н А. Б., Сокольский Д. В., Оптимизация процессов каталитической гидрогенизации в жидкой фазе, в сб. Моделирование и оптимизация каталитических процессов . Изд., Наука , 1965, стр. 242. [c.587]

    Выполнение расчета равновесия жидких фаз направлено на установление составов и соотношения фаз и в конечном счете на получение результатов моделирования процесса. Поэтому важно, чтобы алгоритм расчета был достаточно эффективным. Выбор его применительно к экстракционным колоннам определяется методом расчета от ступени к ступени. В связи с широким распространением модифицированного релаксационного метода расчета противоточных процессов разделения [19, 20] равновесие жидкость — жидкость на теоретической ступени контакта целесообразно рассматривать как расчет одноступенчатой экстракции. [c.7]

    Математическое описание процессов, происходящих в экструдерах, перекачивающих расплавы, справедливо и для пластицирующей экструзии. Однако при этом необходимо дополнить его описанием движения твердых частиц полимера в загрузочных бункерах под действием гравитационных сил, а также описанием распределения давления, условий образования сводов и зависания в бункере, распределения температуры и давления в зоне питания методом расчета длины зоны задержки и распределения давления и температуры в пробке гранул, описанием интенсивности плавления и изменения ширины пробки вдоль зоны плавления, включающим определение средней температуры расплава, перетекающего из тонкой пленки в область циркулирующего запаса. Далее необходимо располагать методами расчета мощности, потребляемой в зонах питания, задержки и плавления, а также методами предсказания условий, вызывающих флуктуации производительности экструдера. Казалось бы, можно свести всю задачу моделирования к описанию полей скоростей, температуры и напряжений как в твердой, так и в жидкой фазах, из которых можно рассчитать все другие интересующие нас переменные. Однако в случае пластицирующей экструзии получить строгое решение задачи гораздо труднее, чем в случае экструзии [c.433]

    С точки зрения математического моделирования (при упрощенном подходе) барботажные колонны, не секционированные горизонтальными перегородками, обычно относят к аппаратам идеального смешения по жидкой фазе и вытеснительного типа по газовой. При секционировании каждая секция рассматривается как аппарат идеального смешения. [c.9]


    Время пребывания жидкости в аппарате невелико, поэтому его целесообразно использовать для быстрых реакций, протекающих в диффузионной области. Расходная скорость газа существенного влияния на массоперенос не оказывает. Аппарат обладает малыми сопротивлениями как по газовой, так и по жидкой фазам. При математическом моделировании его можно рассматривать как аппарат идеального смешения по газовой фазе и вытеснения по жидкой. [c.16]

    Подобие при кипении и конденсации. Коэффициенты теплоотдачи при кипении жидкости и конденсации пара зависят от таких факторов, как теплота парообразования, смачивание, поверхностное натяжение и отношение плотностей паровой и жидкой фаз. Вследствие этих зависимостей при моделировании парогенераторов и конденсаторов с особой тщательностью необходимо подойти к замене одной рабочей жидкости другой. По крайней мере для обеих жидкостей должны быть приблизительно одинаковыми отношение удельных объемов паровой и жидкой фаз, характеристики смачиваемости, теплоты парообразования. [c.311]

    Так, например, математическое моделирование и расчет разделения многокомпонентных азеотропных и химически взаимодействующих смесей методом ректификации сопряжены с определенными вычислительными трудностями, вытекающими из необходимости рещения системы нелинейных уравнений больщой размерности. Наличие химических превращений в многофазных системах при ректификационном разделении подобных смесей приводит к необходимости совместного учета условий фазового и химического равновесий, что значительно усложняет задачу расчета. При этом основная схема решения подзадачи расчета фазового и химического равновесия предусматривает представление химического равновесия в одной фазе и соотнесения химически равновесных составов в одной фазе с составами других фаз с помощью условий фазового равновесия. Для парожидкостных реакций можно выразить химическое равновесия в паровой фазе и связать составы равновесных фаз с помощью уравнения однократного испарения. Для реакций в системах жидкость-жидкость целесообразнее выразить химическое равновесие в той фазе, в которой содержатся более высокие концентрации реагентов. Для химически взаимодействующих систем с двумя жидкими и одной паровой фазой выражают химическое равновесия в одной из жидких фаз и дополняют его условиями фазовых равновесий и материального баланса. Образующаяся система уравнений имеет вид  [c.73]

    В первом примере рассматриваются процессы насыщения потока водорода, движущегося по каналу над зеркалом жидкости, состоящей из ацетона и изопропилового спирта. Процессы переноса, имеющие место в данной системе, соответствуют каталитическому гидрированию ацетона на неподвижном слое катализатора с рециклом жидкой фазы. Моделирование по (2.3.15) проводилось при следующих значениях параметров 1 = 1 — ацетон 1 = 2 — изопропиловый спирт = 3—водород А = 462 м- ё = 0,48 11 = = 10-= кг/(м-с) 7 = 2,92.10-8 м Ш(0) = 0,766-10- м/с с,(0)=с2(0 = = 4-10- кмоль/мЗ сз(0)= 0,436 кмоль/м 7(0) = 303 К Гк(л )= 353 К С]к(х)= 1, 2 кмоль/м С2к(дг)=2 кмоль/м X = 0,197 Вт/(м-К) 5 = = 2,04-10-3 м 1 = 0,8 м Р= 11-10= Па Р, = 8-10= Па W (Ц = [c.50]

    Пример У-2. Моделирование процесса периодической перегонки. Теперь можно приступить к рассмотрению простой периодической перегонки. Предположим, что некоторое известное количество жидкости, содержащей смесь трех компонентов А-, В и С, перегоняется в реторте. Требуется получить такое математическое описание системы, которое выражало бы изменение температуры и состава жидкой фазы [c.93]

    Пример 1-3. Моделирование кинетики гетерогенного каталитического процесса. Рассмотрим пример, взятый из области гетерогенного катализа. Опишем кинетику реакции гидрогенизации, проводимой в аппарате идеального смешения. В ней принимают участие вещества, находящиеся в трех различных фазах в газовой фазе содержится водород (под большим давлением), в жидкой фазе — четыре вещества Л, 5, С и Н , а в твердой фазе — катализатор, представляющий собой слой зернистого материала. В этой системе происходят следующие реакции  [c.129]

    Пример 1Х-13. Моделирование процесса разделения в змеевиковом теплообменнике. На рис. 1Х-13 показана схема установки разделения, которая состоит из бака-питателя 1, змеевикового теплообменника 2, где происходит нагревание и частичное испарение исходной смеси за счет тепла паровой рубашки 5, и сепаратора 4, в котором осуществляется разделение паровой и жидкой фаз. Температура в аппарате измеряется термопарами 3. Упрощенная схема теплообменника показана на рис. 1Х-14. Состав жидкости на выходе из змеевика находится в сложной функциональной зависимости от температуры в паровой рубашке. Для определения условий ведения [c.190]


    Задача 4. Изучить работоспособность системы автоматического регулирования температуры в кубе ректификационной колонны путем моделирования ее на вычислительной машине нри максимально возможных возмущениях по расходу и ее составу X жидкой фазы (рис. Х-24). [c.264]

    Из-за уноса жидкости при интенсивном режиме работы колонны содержание нитрата магния на первых тарелках выше точки его ввода может быть значительным (10—20% на 1-й и 1—5% —на 2-й). В связи с этим при коррекции расчета верхней части колонны необходимо учитывать наличие нитрата в жидкой фазе. Полное математическое моделирование и оптимизация отдельного оборудования и процесса в целом осуществляется на ЭВМ по разработанным ГИАП программам. [c.129]

    Модель смешения применяют прежде всего при моделировании жидкостных реакторов с перемешивающими устройствами. К ним относятся реакторы с пропеллерными, лопастными, якорными и другими типами мешалок, а также с пневматическим и струйно-циркуляционным перемешиванием. Интенсивное перемешивание реагирующих масс в реакторах при протекании основной реакции в жидкой фазе более необходимо, чем для реакций в газовой фазе. Интенсивность любого процесса в жидкой фазе в [c.88]

    Теория о ССЕ, предложенная З.И. Сюняевым является одной из первых моделей, которую можно было использовать для моделирования студнеобразной фазы. [32]Представления типа ядро-оболочка о структурировании в жидкой фазе, позволили разработать модель для описания студнеобразного состояния системы фактически определив ступенчатость фазового перехода при термообработке нефтяных остатков. Эта идея была весьма плодотворной и позволила объяснить ряд экспериментальных фактов. Вместе с тем возникли очевидные трудности, связанные с механизмом и закономерностями образования ССЕ. Наиболее уязвимым местом физико-химической механики нефтяных дисперсных систем явилось то, что в ее рамках не было обоснованного ответа на вопрос, какова природа сил, ответственных за структурирование столь разнородных по химическому строению веществ [32]. Поскольку эти трудности не были разрешены в рамках существующих представлений, на некоторое время от идеи ССЕ пришлось отказаться. [c.69]

    Следует отметить, что хотя описанный метод находит применение, он не пользуется большой популярностью [9]. Помимо трудностей, связанных с оценкой значений Кг, и неопределенностей, возникающих в системах с несколькими растворителями, при моделировании равновесий с помощью уравнений для коэффициентов активности возникает еще одно неудобство. Классические формы этих уравнений выведены в предположении симметричной нормировки и использование несимметричной требует соответствующей модификации модели жидкой фазы. Более перспективен для целей описания равновесий в системах с неконденсирующимися компонентами, вероятно, подход, основанный на едином уравнении состояния для пара и жидкости перечисленные проблемы в нем попросту не возникают. [c.164]

    При моделировании парожидкостного равновесия необходимо иметь способ расчета по свойствам жидкой фазы, а не по данным о равновесии. Такой способ дают полуэмпирические уравнения, связывающие с параметрами жидкости на основе ее физической модели. Математическая форма уравнений должна обеспечивать качественное соответствие экспериментальных и расчетных зависимостей для у1. Соответствие же значений экспериментальных и расчетных у1 устанавливается при оценке параметров модели по имеющимся экспериментальным данным о системе. [c.165]

    В химической промышленности большое распространение имеют системы, включающие две жидкие фазы. При моделировании процессов экстракционного и ректификационного разделения таких смесей стоит задача расчета равновесий жидкость—жидкость и жидкость—жидкость—пар. [c.168]

    В результате моделирования требуется определить необходимую высоту абсорбера для достижения заданной концентрации аммиака в жидкой фазе на выходе из абсорбера. Протокол решения задачи и результаты моделирования показаны на рис. 5.3 1. [c.237]

    Выделение ароматических углеводородов из катализатов платформинга бензиновых фракций, избирательная очистка нефтяных масел, очистка керосино-газойлевых фракций, органических продуктов и сточных вод методом экстракции получили широкое распространение в производственной практике. Для анализа работы существующих экстракционных процессов и проектирования новых важным моментом является разработка и внедрение методов математического моделирования, что позволит проводить выбор лучших вариантов технологических решений на ЭЦВМ, подбирать оптимальные режимы работы экстрактора и в целом повышать технико-экономические показатели процесса. Наиболее общим подходом в математическом моделировании экстракции является. использование гидродинамической массообмённой модели. Однггко в связи.с тем, что гидродинамика потоков во многих типах экстракционных аппаратов сложна, а коэффициенты массообмена трудно определяемы, решение многих технологических задач целесообразно выполнять с применением статической модели процесса, основанной на теоретической ступени контакта двух жидких фаз. Такой подход облегчается тем, что статическая модель практически адекватна реальному объекту при равенстве их эффективности, выраженной числом теоретических ступеней контакта. [c.3]

    При математическом моделировании отдельную барботажную трубу газлифта можно принимать близкой к аппаратам идеального вытеснения как по жидкой, так и по газовой фазе, однако в целом реактор по жидкой фазе следует считать аппаратом идеального смешения. [c.54]

    Одномерная диффузионная модель во многих случаях достаточно полно отражает физическую сущность массопередачи в колонных аппаратах. По-видимому, использование однопараметрической модели обеспечивает для большинства практических задач разумное сочетание ясности физической картины, возможности сравнительно несложного определения параметров модели и доступности математического решения. Как показано в гл. 6, метод расчета массопередачи с химической реакцией в жидкой фазе, основанный на использовании системы уравнений (5.6) и (5.7) с коэффициентом ускорения массопередачи, определяемым уравнением (2.58), обеспечивает надежность решения практических вопросов хемосорбции и может быть положен в основу математического моделирования химико-технологических процессов. [c.159]

    На рис. 7.2 показаны результаты, полученные на основе изложенного выше метода моделирования и также подтверждающие возможность гидродинамической интенсификации тарельчатых абсорберов. Используя расчетную зависимость высоты рабочей части аппарата от его диаметра, близкую к функции гиперболического типа, можно определить оптимальное соотношение габаритов, обеспечивающее изготовление и транспортировку аппарата в одном корпусе. На рис. 7.3 дано распределение концентраций передаваемого компонента в газовой и жидкой фазах по высоте аппарата. [c.201]

    Рассмотрено состояние вопроса о моделировании массообменных аппаратов для проведения газожидкостных процессов с химической реакцией в жидкой фазе. [c.225]

    Прежде чем переходить к изложению конкретных примеров моделирования массопередачи в многокомпонентных смесях, отметим, что адекватность математической модели массопередачи устанавливается не только совпадением расчетных и экспериментальных профилей концентраций компонентов по высоте аппарата или по контактному устройству, но и отображением расчетным путем всех параметров математической модели, т. е. при использовании не случайных, а обобщенных значений параметров математической модели. К сожалению, многие исследователи забывают об этом важном обстоятельстве и адекватность математических моделей определяют обычно при произвольных, подгоночных значениях частных коэффициентов массопередачи или при произвольном соотношении сопротивлений массопередачи в газовой и жидкой фазах. [c.259]

    Газожидкостные реакторы пленочного типа используются для осуществления некоторых очень быстрых экзотермических жидкофазных реакций. При этом имеет место динамическое взаимодействие контактирующих фаз. Проведение процесса при постоянной температуре крайне важно для того, чтобы устранить возможность термодеструкции, сжигания, а также полимеризации реагентов, продуктов реакции и т. п. Вот почему в реакционный газ добавляют некоторое количество инертного газа — азота, диоксида углерода, воздуха, а параметры жидкой фазы поддерживают строго постоянными. Заметим, что время контакта фаз в реакторе зависит от теплового эффекта реакции., температуры стенок и скорости теплообмена. Основными достоинствами пленочных потоков, используемых в газожидкостных реакторах, являются высокая скорость теплопереноса, просто определяемые геометрические и гидродинамические характеристики, а также хорошо контролируемые температурный и реакционный режимы. Вопросы моделирования пленочных газожидкостных реакторов подробно рассмотрены в работе [214]. [c.129]

    Возможно использование моделей, описанных в главе IV, в которых каждый элемент поверхности жидкости экспонируется газу до замены его жидкостью из основной массы в течение одинакового промежутка времени 0. В таких установках точно моделируется механизм абсорбции, постулируемый моделью Хигби. При этом, еслн коэффициент массоотдачи в жидкой фазе для газа с коэффициентом диффузии О А равен то продолжительность экспозиции в модели должна быть 40А1(пк1). Колонны с орошаемой стенкой, обеспечивающие продолжительность контакта порядка 0,5 сек, подходят для моделирования насадочных колонн, а ламинарные струи с контактом, равным нескольким тысячным секунды, — для моделирования барботажных тарелок. [c.176]

    Исследование реакторов для систем газ—жидкость с целью их эасчета и проектирования ведется в следующих направлениях 10] изучение механизма и скорости процесса массопередачи, осложненного химической реакцией моделирование структуры потоков двухфазной системы оценка влияния продольного перемешивания на эффективность реакторов определение межфазной поверхности, удерживающей способности, перепада давления. Важным вопросом является выбор типа реактора. Сравнение коэффициентов массоотдачи по жидкой фазе для систем газ—жидкость в различных реакторах приведено в табл. 4.1 [10]. [c.83]

    При математическом моделировании отдельную барботажнук> трубу можно принимать близкой к аппаратам идеального вытеснения как по жидкой, так и по газовой фазам, однако в целом реактор по жидкой фазе следует считать аппаратом идеального смешения. Одним из достоинств газлифтного трубчатого реактора является возможность использования при его исследовании метода элемент- [c.10]

    Существешшм достоинством представления равновесий жидкость-пар на основе гибридной нейронной сети является исключение итерационных расчетов и множественности решений в ходе определения составов равновесных жидких фаз. Последнее обстоятельство значительно упрощает и решение задачи расчета и моделирования процесса гетероазеотропной ректификации смесей. [c.75]

    Кроликовски [409]. В этой статье приведены программы ЭВМ для расчета перегонки многокомпонентных смесей и моделирования производственных процессов. В описываемых программах применено десять уравнений состояния — от уравнения идеального газа, уравнения Соава и вириального уравнения Хэйдена — О Коннела до уравнения Бенедикта — Уэбба — Рубина — Старлинга. Как отмечает автор, несмотря на то, что в литературе систематически публикуются разработки новых моделей, от старых моделей, как правило, не отказываются. Если какой-либо технологический процесс удается правильно рассчитать при помощи определенной модели, эту же модель принято использовать для прогнозирования прочих аналогичных процессов, так как изменение старой модели в подобной ситуации экономически необоснованно. В статье приводится пример моделирования поведения смеси водорода, легких углеводородов и нескольких кислородсодержащих органических веществ. Для моделирования паровой фазы этой смеси применяется вариант уравнения Редлиха — Квонга, а для жидкой фазы — уравнение Вильсона. Поскольку в центре внимания автора производственные процессы химической, а не нефтеперерабатывающей промышленности, к моделям предъявляется целый ряд требований — применимость к самым разнообразным соединениям в широких интервалах температур и давлений, а также простота и высокая скорость сходимости, т. е. своего рода универсальный характер. [c.109]

    При моделировании эта программа объединяется с другими программами, необходимыми для расчета процесса с учетом факторов абсорбции и отпарки. Блок-схема всей программы ABR показана на рис. Vni-25. Входная и выходная информация блока ABR представлена на рис. Vni-26. Отметим, что стандартная подпрограмма FSH здесь используется в нескольйо измененном виде, а именно величина отбираемой жидкой фазы RT принимает значение либо О, либо 1, и в программе осуществляется итерационный цикл счета для нахождения температур Ti и Т необходимых для расчета энтальпии уходящих потоков пара и жидкости и Ef. Входные величины для стандартной программы EDMTR также получают из подпрограммы FSH, внутри которой рассчитываются константы фазового равновесия, для чего используются подпрограммы HRI, ITR и общий материальный баланс системы. Программа ABR включается в модель расчета ректификационной установки, состоящей из кипятильника, колонны и дефлегматора, так, как показано на рис. УП1-28. [c.171]

    При моделировании на ЭВМ важным критерием решения уравнения (ЗУ является время счета. Для определения коэфЗЕициентг, оязтмаемости паровой и жидкой фазы предлагается использовать усовершонствоваиннй [c.82]

    Исходя из этих соображений, Рийнсдорп и Маарлевельд [40] построили модель ректификационной установки (для колонны с 32 тарелками) из пассивных элементов и 25 катодных повторителей. К системе уравнений, описывающих динамику содержания, применены упрощающие предположения 3, 8, 9а, 10 и 13. Уравнения были линеаризованы, и по ним была построена модель нестационарных процессов изменений содер->1<ания, потока жидкой фазы и давления. В результате моделирования были получены логарифмические частотные характеристики. К недостаткам этого подхода можно отнести большие затраты на изготовление модели из пассивных элементов, имеющих неточные частотные характеристики. [c.497]

    Следует отметить, что рассмотренная модель описывает не только процесс ректификации, но и абсорбцию, а также совмещенные процессы (например, абсорбционио - отпарные колонны). Особенности того или иного процесса будут проявляться только в процедуре расчета фазового равновесия -уравнение (1.7). Метод широко использовался при моделировании самых разнообразных процессов химической технологии при моделировании работы сложных колонн [14], нефтестабилизационных колонн [20], абсорбционно -отпарных колонн [17]. Более того метод легко модифицируется для расчета разделения неидеальных систем [21], для расчета разделения систем с двумя расслаивающимися жидкими фазами [22] и даже для моделирования динамических (нестационарных) режимов работы колонного оборудования [23]. [c.9]

    Математическое моделирование процесса дегидрирования изоборнеола в жидкой фазе.— В кн. Синтетические продукты из канифоли и скипидара.— Труды 11 Всесоюзного научно-технического совещания. Горький, 1970, с. 446—454. Авт. А. И. Головин, В. А. Выродов, Н. С. Гурфейн, С. Я- Ко-р<тов. [c.190]

    Целью второй серии опытов было изучение влияния ионного состава жидкой фазы на сорбцию ионов смешанным слоем ионитов. На смешанный слой ионитов, взятых в емкостном соотношении 1 1 (по 25 мг-экв), подавался моделированный катиониро-ванный или аниониро-ванный раствор. Последние готовились смешиванием нужных объемов хлористого натрия и соляной кислоты, а также хлористого натрия с раствором натровой щелочи с тем, чтобы концентрация раствора по сумме катионов и анионов оставалась равной 0,01 н. [c.30]

    В данном докладе на примере сложной химической реакции -жидкофазного окисления тетралина - показано практическое применение общей методики моделирования барботажных реакторов с использованием вычислительной техники, разработан алгоритм и составлена программа расчета на ЦВМ барботажного реактора, с протекающей в нем медленной химической реакцией в жидкой фазе. [c.96]

    Известно, что экспериментальное изучение многокомпонентной ректификации как процесса тепло- и масоообмена между шаровой и жидкой фазами, протекающего в сложных гидродинамических условиях, технически и методически крайне сложно и может приводить к трудно оцениваемым ошибкам. Поэтому, наряду с получением экспериментальных данных, большое значение имеет разработка расчетных методов исследования процесса, т. е. его математическое моделирование. [c.11]


Библиография для Моделирование жидкой фазы: [c.363]   
Смотреть страницы где упоминается термин Моделирование жидкой фазы: [c.277]    [c.216]    [c.289]    [c.26]    [c.148]    [c.263]    [c.689]   
Фазовые равновесия в химической технологии (1989) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза



© 2025 chem21.info Реклама на сайте