Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

БЕЛКИ И ВОДА

    Биофизика мембран. Биологические мембраны — это тонкие (- 80 А) листки из липидов и белков. Они играют ключевую роль во многих жизненных процессах, но об их структуре известно мало. Большая часть физических экспериментов (например, ЯМР) не может быть осуществлена на отдельной мембране, поскольку она содержит слишком мало вещества. Однако можно создать модельную систему из липидов и воды или даже из липида, белка и воды [58], имеющую ламеллярную (слоистую) структуру. Предполагается, что каждый отдельный слой будет в некотором смысле аналогом мембраны. Можно использовать достаточно большие образцы объемной фазы этого типа, чтобы проводить точные физические исследования ). [c.34]


    Прочность адсорбционных межфазных слоев водных растворов белков на границе с различными углеводородами неодинакова. Нами была предпринята попытка объяснить это явление с учетом результатов исследования взаимодействия этих же углеводородов с белками в водном растворе (солюбилизации углеводородов) [159, 160]. Было установлено, что взаимодействие белков с углеводородами в водных растворах является самопроизвольным обратимым процессом, механизм которого заключается в распределении углеводородов между неполярными областями макромолекул белка и водой. [c.215]

    Протоплазма состоит преимущественно из белков и воды, но содержит также жиры, сахара, соли и другие соединения. Белки — гидрофильные коллоиды их сильное химическое сродство к воде обусловлено в значительной степени гидрофильными группами аминокислотных боковых цепей, расположенных вдоль полипептидного состава белковой молекулы. Некоторые из этих боковых цепей содержат неполярные углеводородные участки, не имеющие сродства к воде однако атомы кислорода и азота гидрофильны, и молекулы воды вокруг них оказываются строго ориентированными, главным образом вследствие образования водородных связей. [c.146]

    Первому набору контуров приписывается нулевая энергия (пунктирный контур на рис. 11.1). Если для этого контура выбрать более низкое значение энергии, то любая часть объема, которая не находится на расстоянии 6 А по прямой по крайней мере от одного из атомов белка, будет ошибочно рассматриваться как недоступная для растворителя. Однако не весь объем в пределах контура с нулевой энергией доступен для растворителя. Взаимодействия валентно несвязанных атомов каждой молекулы воды в кристалле должны быть вполне энергетически выгодны, если для молекулы воды предпочтительно кристаллическое окружение по сравнению с водным раствором, находящимся в равновесии с кристаллом. Поэтому положение, для которого энергия взаимодействия между белком и водой равна нулю, может быть занято молекулой воды лишь в том случае, если для молекулы воды в этом положении возможно несколько энергетически выгодных взаимодействий. [c.204]

    Устойчивость раствора высокополимеров в полярных растворителях в значительной степени связана с сольватацией полярных групп. Раствор полимера образуется в том случае, если притяжение белка и воды значительно больше взаимного притяжения молекул полимера. Добавление органического растворителя к раствору белка вызывает уменьшение притяжения полярных групп фермента к молекулам воды, так как уменьшается количество молекул воды, присоединяющихся к полярным группам белка. Уменьшение притяжения активных групп фермента к молекулам воды обусловлено главным образом снижением диэлектрической постоянной среды. [c.143]


    Для выяснения причин различной прочности межфазных адсорбционных слоев белков на разных углеводородных границах исследовалось взаимодействие этих же углеводородов с белками в водном растворе (солюбилизация углеводородов) [24]. Было установлено, что взаимодействие белков с углеводородами в водных растворах является самопроизвольным обратимым процессом, механизм которого заключается в распределении углеводорода между неполярными областями макромолекулы белка и водой. Вычислено изменение свободной энергии при связывании углеводородов, которое составляло 2— [c.48]

    ГЕНЫ, БЕЛКИ И ВОДА [c.252]

    Стокер [734] предположил, что реакция протоплазмы на недостаток воды проходит две стадии первая из них связана с уменьшением вязкости и увеличением проницаемости, а вторая, наоборот, — с увеличением вязкости и уменьшением проницаемости. Во время первой стадии, как полагает Стокер, связи между белком и водой ослабевают, а во время второй они восстанавливаются вновь, но уже в иной конфигурации. Возможно, что две противоречащие друг другу группы данных, о которых мы только что говорили, можно согласовать на этой основе. [c.200]

    При локализации метки в наружном водном слое значение Тс составляет 10 -е- 10 ° с (рис. Х.12). Поверхностные слои, в которые входят боковые группы белков и вода в щелях , характеризуются Тс 10 ° -е- 10 с. В более глубоком слое глобулы, где включены внешние полипептидные цепи, стиснутые боковые группы и прочносвязанная вода, Тс повышается до 10 -10 с. Это ясно свидетельствует о замедлении скорости вращения метки по мере ее погружения, что соответствует существованию более плотного ядра глобулы по сравнению с рыхлой опушкой (см. 2 гл. УП). В целом времена корреляции, поддающиеся определению методом спиновых меток, находятся в диапазоне 0,1-300 не, хотя в последние годы интенсивно развиваются методы, позволяющие определять Тс спиновых меток до 10 -10 " с. [c.278]

    Таким образом, в первой (приспособительной) фазе ответной реакции растения на действие засухи происходит усиление взаимодействия основных структурных ингредиентов цитоплазмы— белков и воды. Результатом является повышение стабильности цитоплазмы и увеличение водоудерживающей способности клеток листа, подтвержденное специальными экспериментами [104]. Эти изменения позволяют растению с меньшими потерями перенести умеренную засуху. Во время второй фазы ответной реакции начинается разупорядочение цитоплазмы, способное привести к гибели растения. [c.44]

    Известно, что объемистая гуанидиновая группа занимает гидрофобные области белка с меньшей вероятностью, чем аминогруппа. Поэтому замена последней группы на первую должна стабилизировать структуру белка. Данные о скорости обмена тритием между белком и водой действительно согласуются с предположением о менее гибкой структуре модифицированного белка. [c.108]

    В. Применение метода к кристаллу ИТПЖБ. Система, подлежащая моделированию, состоит из атомов белка одной молекулы ИТПЖБ [5] и 140 молекул воды. Требуемое число молекул воды можно рассчитать и из объема кристалла, для которого энергия взаимодействия белок — вода равна нулю или отрицательна (пространство растворителя) [9], и из объема элементарной ячейки и плотности белка и воды. Взаимодействия вода — белок рассчитывались, как описано выше, а взаимодействия белок — белок — по методу, изложенному в работе [23]. Расчет взаимодействий между молекулами воды вели, используя модель 5Т2, введенную Раманом и Стиллинджером [11] при моделировании жидкой воды методом молекулярной динамики. [c.211]

    Проведены сравнительные исследования общего содержания бел ка (среднее значение четырех отдельных определений) сыворотки животных с предопухолевыми изменениями и раком молочной железы. Не были обнаружены такие различия, которые могли бы объяснить повышение Фактически, по данным Hollis и сотрудников (1974), незначительное увеличение концентрации белка приводит к удлинению Данные о том, что почти одни и те же значения концентрации белка в сыворотке крови обнаружены у мышей с двумя типами предопухолевых узлов и у животных с двумя типами злокачественных опухолей, ставят вообще под вопрос роль этого фактора в повышении значений Для того чтобы снизить концентрацию белка в сыворотке крови, животные были посажены на безбелковую диету. Сыворотка этих мышей, получавших в течение 5 дней глюкозу, имела низкую концентрацию белка (3,8 мг %), тогда как у контрольных животных содержание белка было 4,95 мг%. Однако значения сыворотки этих животных не отличались от контрольных. Следовательно, полученные результаты не подтверждают идею о том, что значения сыворотки являются только функцией концентрации белка и воды. [c.284]

    Миелиновые оболочки являются доминирующим элементом белого вещества, составляя 50% его сухого веса, и имеют самое высокое содержание липидов, низкое содержание белка и воды. Миелин довольно дегидратированная структура, в нем около 40% воды (немиелиновая часть белого вещества содержит 80% воды). Твердый остаток миелина в среднем содержит 70—80% липидов и 20—30% белка. Липиды миелина ЦНС содержат 25—28% холестерина, 27—30% галактосфинголипидов, 40—45% фосфолипидов. В табл. 27 представлены данные по химическому составу миелина. [c.111]



Смотреть страницы где упоминается термин БЕЛКИ И ВОДА: [c.329]    [c.214]    [c.104]    [c.45]   
Смотреть главы в:

Перекрёстки науки -> БЕЛКИ И ВОДА




ПОИСК





Смотрите так же термины и статьи:

Адсорбция воды на белках

Белка определение в воде

Белки внутренние молекулы воды

Белки локализация воды

Белки растворы в воде

Белки с водой

Белки. Липиды. Углеводы. Витамины. Ферменты. Минеральные вещества. Вода. Пищевая ценность продуктов) 2, Физические свойства пищевых продуктов

Взаимодействия вода белок

Водородные связи между водой и белковыми молекулами

Дифракция рентгеновских лучей определение воды в белках

Коагуляция куриного белка сульфатом аммония и пептизация его при разбавлении водой

Конкуренция молекул воды за места образования водородных связей в белке

Определение структурной воды методом нейтронографического исследования белка. Анализ структуры комплекса карбоксимиоглобинвода. Б. Шенборн, Дж. Хансон

Полипептиды, Белки, Вода

Релаксация взаимодействий вода белок

Теплота адсорбции воды на белках

Термодинамика взаимодействий белок — вода



© 2025 chem21.info Реклама на сайте