Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода скорость взаимодействия

    Сравнение этого значения растворимости с растворимостью в чистой воде (л = 1,50-10 моль/л) показывает, что с повышением ионной силы раствора растворимость малорастворимого электролита в его насыщенном растворе несколько возрастает (солевой эффект). При повыщении ионной силы раствора коэффициенты активности ионов малорастворимого электролита уменьшаются. Так как произведение активностей ионов (термодинамическая константа равновесия) есть величина постоянная, то при уменьшении коэффициентов активностей должны увеличиваться равновесные концентрации ионов малорастворимого электролита, т. е. растворимость его возрастает. Ионная сила раствора влияет на скорость реакций. Предложено много различных уравнений, учитывающих это влияние. Так, константа скорости взаимодействия иона и молекулы зависит от ионной силы раствора в соответствии с уравнением [c.294]


Таблица 2.3. Константы скорости взаимодействия некоторых кислот с водой Таблица 2.3. <a href="/info/3323">Константы скорости</a> взаимодействия некоторых кислот с водой
    Полимерцементные материалы относятся к композиционным вяжущим, получаемым на основе неорганической составляющей (портландцемент, глиноземистый цемент, гипс и др.) в сочетании с органическим компонентом [20]. В качестве органического компонента используются водорастворимые материалы (эпоксидные, карбамидные и фура-новые смолы, производные целлюлозы и др.) и водные дисперсии полимеров (поливинилацетат, латексы, эмульсии кремнийорганических полимеров). Применяются также мономерные и олигомерные соединения, которые полимеризуются при гидратации вяжущего материала под действием отвер-дителей и инициаторов, температуры, рН-среды и т. п. Полимерный компонент вводится либо в воду затворения, а затем используется при приготовлении растворной или бетонной смеси, либо вводится в виде порошкообразного компонента в состав сухой смеси на основе вяжущего вещества, а затем при затворении растворной или бетонной смеси водой диспергируется в водной среде, а при твердении растворов полимеризуется [10]. Свойства получаемых материалов зависят от многих факторов вида и качества цемента, вида полимера, полимерцемент-ного отношения (П/Ц), водоцементного отношения (В/Ц) и др. Полимерцементное отношение определяется как отношение массовой доли полимера (в расчете на сухое вещество) и цемента в композиционном вяжущем. Для полимерцементных материалов характерно отношение П/Ц > 0,2-0,4, когда полимерная фаза образует в цементном камне органическую структуру. При П/Ц = 0,2-0,25 кристаллизационно-коагуляционная структура цементного камня в местах дефектов (полы, трещины) укрепляется полимерной составляющей, что и обусловливает формирование более прочной и эластичной структуры. При П/Ц > 0,25 полимер образует непрерывную полимерную сетку. В полимерцементных композициях не наблюдается взаимодействие между органической и неорганической фазами [20]. Органические фазы взаимодействуют с гид-ратными фазами только за счет ионных и водородных связей и сил Ван-дер-Ваальса. В присутствии полимерных добавок изменяется кинетика гидратации портландцемента, причем с ростом П/Ц наблюдается замедление скорости взаимодействия цемента с водой. [c.295]

    В данной работе нужно определить среднюю константу скорости реакции и ее энергию активации колориметрическим методом. Скорость взаимодействия уксусного ангидрида с водой велика и титрометрические методы для кинетических исследований в этом случае непригодны. Поэтому для изучения этой реакции применяют физико-химические методы анализа. Одну из возможностей изучения кинетики этой реакции дают колориметрические исследования (см. работу 7). [c.385]


    Газовая смесь, состоящая из водорода и кислорода при комнатной температуре, метастабильна из-за низкой скорости реакции. .. +. .. =. ... Внесение в эту смесь катализатора (губчатая платина) сопровождается взрывом, так как скорость взаимодействия водорода и кислорода резко. .. Перегретая вода или переохлажденный пар также относятся к числу. .. систем. [c.270]

    Было проведено исследование влияния сероводорода на скорость коррозии стали 20 кп в потоке воды. Скорость коррозии определяли в процессе электрохимических исследований, а также по потере массы железа в результате титрования раствора. Сопоставление результатов показало, что в отсутствие сероводорода скорости коррозии, определенные обоими способами, совпадают с достаточной точностью, однако насыщение раствора сероводородом приводит к резкому расхождению результатов. Скорость коррозии, определенная по результатам титрования, оказалась значительно больше, чем определенная по результатам электрохимических исследований. Это расхождение между величинами скорости коррозии может быть объяснено взаимодействием со сталью продуктов окисления сероводорода кислородом воздуха. В результате окисления сероводорода образуется коллоидный раствор серы, о чем свидетельствуют мутность растворов и результаты их качественных реакций с пиридином. Это подтверждав тер.модинамическую возможность окисления сероводорода в данных условиях с образованием сульфатов и элементарной серы и способности серы реагаровать со ста тью, образуя сульфиды. [c.31]

    В каждый данный момент большое число молекул уксусной кислоты и этилового спирта взаимодействуют между собой и одновременно с этим также большое число молекул уксусноэтилового эфира разлагаются водой. Скорости этих процессов вначале различны, но потом наступает момент, когда становится равной ьч и система приходит в состояние равновесия, хотя и в этот момент продолжают идти реакции как образования сложного эфира, так и его омыления. [c.95]

    Общая скорость поглощения окислов азота лимитируется скоростью взаимодействия их с водой. [c.291]

    Этим методом можно осаждать, например, ионы бария в виде сульфата бария. Необходимые для этого сульфат-ионы получаются либо из пероксодисульфат-ионов, либо из диметилсульфата путем их медленного взаимодействия с молекулами воды, скорость которого регулируют изменением температуры раствора  [c.124]

    Большое значение обменные реакции имеют при получении сополимерных тиоколов на основе двух разных алкилдигалогенидов. Вследствие различной растворимости дигалогенидов в воде и скорости взаимодействия с полисульфидом натрия трудно получить сополимеры заданного состава. Однако, если смешать дисперсии двух гомополимеров высокой молекулярной массы в нужных соотношениях в присутствии незначительного количества дисульфида натрия, то можно получить статистический сополимер, близкий по составу к рассчитанному на основании соотношения компонентов исходной смеси [10, с. 477]. [c.561]

    Рассчитать, во сколько раз скорость взаимодействия атомарного хлора с молекулярным водородом при 500 К и 298 К превосходит скорость реа< ции атомарного водо- [c.94]

    Однако эта модель не всегда дает хорошее согласие с экспериментальными данными. Например, установлено, что теплота гидратации иона серебра Ag+ существенно больше, чем ионов натрия нли калия, хотя величина кристаллографического радиуса иона серебра лежит меладу соответствующими величинами для этих ионов щелочных металлов. Существуют и другие факты, указывающие на то, что гидратация ионов тажельк металлов связана с процессами комплексообразования с ковалентным характером связи. В качестве прикюра можно отметить изменение окраски прп растворении некоторых соединений переходных металлов, например, Сг(П1) или №(П), и низкую скорость процесса их растворения в воде. Ковалентное взаимодействие возможно только с катионами, поскольку только кислородный атом молекулы воды может участвовать в образовании ковалентных связей (коваг лентно связанный атом водорода не может образовать вторую ковалентную связь). [c.129]

    Большинство загрязнений или продуктов их химических превращений являются веществами, хорошо или умеренно растворимыми в воде. Поскольку более 70% поверхности земли занято водой, то взаимодействие загрязнений с водной фазой может определить скорость их стоков. Так, теоретические расчеты, основанные на некоторые экспериментальных данных, свидетельствуют [c.16]

    Методы очистки относительно дешевыми растворами карбонатов имеют серьезный недостаток, обусловленный малой растворимостью солей (особенно бикарбонатов) в воде при обычных температурах. Кроме того, скорость взаимодействия двуокиси углерода с карбонатами весьма мала, что приводит к увеличению циркуляции раствора, возрастанию габаритов аппаратуры и расхода пара на регенерацию содовых и поташных растворов. [c.247]


    Скорость взаимодействия двух разноименно заряженных ионов также уменьшается при увеличении содержания воды в бинарной системе этанол-вода  [c.114]

    Пикраты в пикриновой кислоте образуются в производстве при взаимодействии ее с солями, содержащимися в воде, оставшейся в пикриновой кислоте после фуговки (или отсасывания на вакуум-воронке). Скорость взаимодействия увеличивается при просушке пикриновой кислоты при 50—60°. Легче получаются соединения Са и Ре, так как они находятся в воде в виде основных солей (они реагируют с пикриновой кислотой легче, чем средние соли). [c.271]

    Проведенные в ВНИИСПТнефть эксперименты пока-тли, что скорость взаимодействия кислорода и ионов келеза Зависит от pH среды, причем pH среды может юнижаться, если с кислородом прореагируют все со-(ержащиеся в воде ионы двухвалентного железа. [c.161]

    Трудности достижения равномерных окрасок вследствие неоднородности физической и химической структуры волокна сдерживают применение водорастворимых активных красителей для крашения полиамидных волокон. Значительно лучшие результаты дают специально синтезированные для полиамидных волокон активные дисперсные красители. Будучи нерастворимыми в воде, эти красители подобно обычным дисперсным красителям в слабокислой среде (pH 4) равномерно и полно прокрашивают полиамидное волокно, а затем при подщелачивании ванны до pH 10,0—10,5 ковалентно фиксируются полимером. В результате на волокне образуется ровная и прочная окраска. Ковалентную химическую связь дисперсный активный краситель образует как с концевыми аминогруппами полиамида, так и с амидными группировками, хотя скорость взаимодействия с последними значительно ниже. [c.109]

    Из значений предельных токов каталитических волн водорода удалось определить [81—83] константы скорости взаимодействия катализатора (в частности, пиридина [82, 83]) с различными донорами протонов борной кислотой, вероналом, ионами гидроксония и водой. Константы скорости протонизации были прослежены в ряду [81, 83] пиридин, а-пиколин, Р-николин, у-пиколин и а, а -лутидин. Прямая пропорциональность между логарифмом константы скорости протонизации и отрицательным логарифмом константы кислотной диссоциации катализатора Ка была найдена лишь для протонизации под действием воды (табл. 23), т. е. для реакции [c.392]

    Отрезки, отсекаемые на оси ординат прямыми р — концентрация кислоты, определяют величину ро — суммарную константу скорости взаимодействия дианиона малеиновой кислоты с водой и ионами водорода [см. уравнение (63)1. Нанесение на график зависимости ро от [Н ] позволило определить А н+ (см. рис. 18). [c.131]

    В гораздо более агрессивной среде, какой является морская вода, скорость коррозии определяется деятельностью и взаимодействием морских микроорганизмов и бактерий. В условиях постоянного полного погружения стальные пластины сначала корродировали с очень высокой скоростью, но быстро обрастали морскими организмами, в дальнейшем этот слой оказывал существенное защитное воздействие. В отсутствие обрастания наибольшие коррозионные потери массы (среди четырех партий образцов) наблюдались бы, несомненно, именно з морской воде. Такое предположение подтверждается сравнением данных для солоноватой и морской воды на рис. 121, а также результатами, полученными при испытаниях в Карибском море, которые обсуждаются ниже. В слегка солоноватой воде обрастание морскими организмами не присходит, поэтому скорость коррозии выше, чем в морской воде, хотя сама по себе малая соленость уменьшает коррозионную активность воды. В результате коррозионные потери в солоноватой воде после 4-летней экспозиции были гораздо выше, чем в морской воде, где проявилось защитное действие биологического обрастания. [c.443]

    При увеличении содержания спирта происходит как снижение основности катализатора (р л становится ниже), так и снижение кислотности донора протонов — воды (p w повышается). Оба эти фактора приводят к уменьшению кг — константы скорости взаимодействия катализатора с водой. Интересно, что в соответствии с соотношением Бренстеда изменение lg к при увеличении содержания спирта пропорционально сумме абсолютных величин изменения катализатора и рЛГ воды (рис. 66) [276]. При [c.252]

    Однако при эксплуатации катализаторов, даже в условиях нормальной влажности циркулирующего ВСГ, происходит постепенное дехлорирование катализатора со скоростью 0,1 масс. % хлора в течение 2-3 месяцев. Основная причина — следы воды, которые взаимодействуют с носителем и гидролизуют ионы хлора на его повфхности. Последний в виде хлористого водорода удаляется из зоны катализа. В условиях повышенной влажности, которая имеет место в начале сырьевого цикла, потери хлора катализатором возрастают в несколько раз. В результате дехлорирования катализатора при неизменных остальных параметрах процесса происходит снижение октанового числа риформата и концентрации в нем ароматических углеводородов. [c.834]

    Для данной реакции в случае железооксидного катализатора был предложен стадийный механизм, включающий раздельное протекание процессов взаимодействия СО с кислородом поверхности катализатора с образованием СО2 и окисление поверхности катализатора парами воды с образованием водорода [1.15]. Для подтв,ерждения данного механизма были измерены скорости предполагаемых стадий, которые затем сравнивались со скоростью реакции для железооксидного катализатора [1.16]. По мере снятия кислорода с поверхности катализатора скорость его взаимодействия с СО с образованием СО2 уменьшается, а скорость взаимодействия с водой с образованием водорода возрастает. При содержании кислорода на поверхности, отвечающем стационарному состоянию катализатора, скорости таких стадий [c.10]

    Т. е. один сходный активный центр — атом водорода, вступив в реакцию, вызвал образование, кроме двух молекул конечного продукта — воды, трех новых активных центров. В реакциях (VII) и (VIII) происходили разветвления цепи. Количество активных центров при таком механизме прогрессивно возрастает. При этом скорость началиного генерирования активных центров по реакции (V) может не влиять на суммарную скорость взаимодействия. [c.26]

    Механизм процессов, приводящих к резкому ускорению коррозии, еще не достаточно ясен. Его объясняют появлением трещин в оксидной пленке вследствие концентрирования напряжений в толще оксида. Однако, когда металл окисляют в кислороде, скорость коррозии не увеличивается, за исключением случаев очень длительной выдержки и очень толстой оксидной плёнки. Оказалось, что ведущую роль играет водород, выделяющийся в результате разложения воды при взаимодействии с металлом, и особенно та его часть, которая растворяется в металле, приводя к более высоким скоростям окиздения [55]. Данные рентгеновских исследований показывают, что в воде на поверхности циркония как до, так и после ускорения коррозии присутствует моноклинный диоксид 2гОа. Имеются также некоторые сведения, что первоначально возникающий оксид имеет тетрагональную структуру [56].,  [c.381]

    Дли трещиноватых коллекторов, содержащих пластовые воды с низкш значением pH (менее 7,0), при удовлетворительной приемистости содержание водорастворимых силикатов в ванне должно быть большим, чем для пористых коллекторов. Однако оно не должно превышать 7—10% вследствие трудности фильтраций через глинистую корку. Скорость взаимодействия водорастворимых снликатов с пластовыми водами повышается с ростом температуры и давления. Эти факторы существенно, влияют на аморфность или кристалличность продуктов взаимодействия водорастворимых силикатов с катионами кальция и других поливалентных металлов. Эти продукты в зависимости от формы при кольмата-ции пэрового пространства или трещин, видимо, могут иметь различную силу сцепления с коренными породами. [c.251]

    Перспективным синтетическим методом является так называемый межфазный катализ, который позволяет значительно увеличить скорость взаимодействия реагентов, находящихся в двух несмешивающихся жидкостях. В межфазном катализе используются четвертичные аммониевые и фосфониевые соли, например (N ( .Hs), ( H, H,) 1-, IN ( .HJ, I-, IN (СИ.,) (С Н )зГ С1, IP ( 4Hj)4l I и др. Будучи растворимыми как в воде, так и в органических растворителях, эти соли способствуют переносу неорганического реагента в органическую фазу, где и происходит реакция. [c.234]

    Наличие оксидных, пленок на поверхности восстановителя. Эти пленки практически имеются на всех металлах. Они с разной скоростью растворяются в слабокислых растворах солей, ио существенного влияния на скорость взаимодействия металлов с растворами солей не оказывают. Для получения металлов таким способом к (раствору соответствующей солн, взятой в избытке, добавляют металл-восстановнте.чь. Раствор взбалтывают и оставляют па несколько часов или дней. Затем порошкообразный осадок отфильтровывают, промывают водой, спиртом и высушивают. Получеин1-.1е металлы (медь, серебро, платиновые металлы) желательно промыть разбавленной кислотой. [c.27]

    Вычислите скорость взаимодействия З-нитро-6-хлорпиридина в воде при 65 °С с п-аминофенолом и сульфаниловой кислотой. [c.200]

    В морской воде скорость коррозии во многом зависит от деятельности и взаимодействия морских микроорганизмов. В условиях постоянного воздействия морской воды сталь сначала корродирует с очень большой скоростью, но быстро обрастает микроорганизмами, и в дальнейшем этот слой оказывает защитное действие. Покрытие на металле в виде продуктов коррозии и обрастания становится достаточно толсткм, и диффузия кислорода к поверхности прекращается. Часть этого кислорода поглощают аэробные бактерии. Однако низкая скорость коррозии сохраняется недолго, так как в отсутствие кислорода начинают действовать анаэробные бактерии. Условия для их роста возникают под образовавшейся пленкой, где возникает анаэробная среда. Кроме того, росту анаэробных бактерий способствует присутствие ионов железа, сульфатов и органических веществ. Как только начинают развиваться анаэробные бактерии, коррозия, замедленная защитной пленкой, усиливается и достигает постоянной скорости, уже не зависящей от толщины защитной пленки. [c.20]

    Необходимо указать, что в технологической схеме производства ХБК трубчатые турбулентные аппараты струйного типа аналогичной диф>фузор КОнфу-зорной конструкции следует использовать и на других стадиях технологического процесса, в частности при нейтрализации раствора образовавшегося ХБК (константы скорости взаимодействия минеральных кислот со щелочами весьма высоки Kp=10 л/моль-с), промывке раствора ХБК водой от солей и другой, отмывке возвратного растворителя, при введении в раствор ХБК стабилизатора-антиоксиданта и антиагломерата, а также взамен всех интенсивных, в том числе и безобъемных смесителей с механическими мешалками (рис.7.37). В большинстве из этих стадий трубчатые турбулентные аппараты прош.яи широкую [c.345]

    Одновременное воздействие водяного пара и кремнезема значительно ускоряет процесс образования растворимых в лимонной кислоте силикофосфатовэ . Скорость взаимодействия фторапатита с кремнеземом в начальный период реакции пропорциональна количеству введенного кремнезема. В дальнейшем реакции лимитируются диффузионными процессами Скорость обесфторивания апатита (и его смесей с кремнеземом) водяным паром пропорциональна парциальному давлению воды в газах.  [c.256]

    Кинетика взаимодействия оксидов азота с водными растворами азотной кислоты в присутствии кислорода представляет собой сложный массообменный процесс, сопровождаемый химическими реакциями в газовой и жидкой фазах [6, 48, 51]. Скорость взаимодействия оксидов азота с водой зависит от фнзико-хнмнческих и гидродинамических условий абсорбции. Из рис. 1-37 [c.55]

    Если в Процессе восстановления равновесия участвует более чем одиа химическая реакция, каждой из их соответствует оное характерное ремя релаксации. Когда эти времена примерно одинаковы, определить их по отдельности довольно трудно, одяако, кш правило, времена релаксации разных химических реакций различаются на порядок и даже -более. Таким образам, для исследуемой системы часто удается измерить два и больше времен релаксации. В отдельных случаях эти времена можно прямо связать с константами скорости отдельных стадий. Например, Эйген наблюдал за скоростью взаимодействия Н+ с ОН , регистрируя изменение электропроводности воды вслед за температурным скачком [10]. При 23 °С величина т составляла 37-10 с. Константа скорости процесса [c.26]

    По мере того как кислота и спирт реагируют друг с другом и происходит накопление продуктов их взаимодействия (эфира и воды), скорость обратной реакции, вначале незначительная, возрастает. При этом скорость прямой реакции постепенно уменьшается. Наконец, наступает динамическое равновесие, когда в единицу времени в сложный эфир превращается столько же молекул кислоты и спирта, сколько молекул сложного эфира распадается на кислоту и спирт. Одинаковой скоростью этих противоположно протекающих процессов обусловлен постоянный состав системы. Поскольку скорость бимолекулярной реакции пропорциональна произведению концентраций реагируюпщх ве- [c.204]

    Следовательно, меняя соотношения реагирующих веществ, можно получать моноэфпры этиленгликоля либо нолпглпколей. Чем больше взято в реакцию окиси этхтаена, тем больше выход, эфиров полигликолей. Кроме того, если для реакции взят не абсолютный спирт, то значительная часть воды, введенная вместе с нпм. в реакционную смесь, соединяется с окисью этилена с образованием этиленгликоля и тем самым понижает выход эфира. Это объясняется тем, что скорость взаимодействия окиси этилена с водой значительно больше скорости реакции ее со спиртом в тех же условиях. [c.156]

    В газовой фазе могут присутствовать сероводород, диоксид серы, пары серы и воды. В условиях реальных технологических процессов переменными величинами являются не только температура,опреде-ляю1щя возможность реализации определенных химических реакций, но и конпритрации твердых и газообразных реагентов, зависящие от мощности входных потоков и скоростей взаимодействий, поэтому необходимо изучить качественный и количественный состав продуктов об-жш а в различных условиях. [c.31]


Смотреть страницы где упоминается термин Вода скорость взаимодействия: [c.230]    [c.92]    [c.93]    [c.78]    [c.112]    [c.228]    [c.172]    [c.386]    [c.445]    [c.464]   
Биохимия Том 3 (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Скорость взаимодействия



© 2025 chem21.info Реклама на сайте