Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмиссия ионов вторичных масса, измерение

    При аналитических работах, выполняемых с помощью масс-спектрометров, в большинстве случаев приходится иметь дело с ионными токами величиной 10 —д. измерение может осуществляться различными методами, из которых наиболее распространенными являются метод электрического заряда и метод вторичной эмиссии. Первый состоит в измерении разности потенциалов, возникающей при прохождении ионного тока на высокоомном сопротивлении (10 —ом), соединяющем коллектор ионов с землей. Указанная разность потенциалов, являющаяся мерой ионного тока, измеряется затем либо с помощью лампового электрометра с подключенным к нему на выходе гальванометром или усилителем постоянного тока, либо динамическим электрометром и усилителем переменного тока низкой частоты. Наибольшее распространение получил первый способ усиления, используемый в большинстве отечественных приборов. [c.34]


    Метод электронно-стимулированной десорбции, во многом напоминающий метод вторичной ионно-ионной эмиссии, позволяет решать примерно те же задачи. Так, этим методом можно детально изучать адсорбированные слои, формы связей и состояние частиц на поверхности, десорбционные процессы, химические гетерогенные реакции и т. д. Кроме того, в ряде работ масс-спектрометрические измерения дополняются определениями полного ионного тока, потенциалов появления, углового и энергетического распределения вторичных ионов, что дает возможность оценивать эффективное сечение процесса десорбции ионов и некоторые другие характеристики молекулярной адсорбции и хемосорбции. [c.50]

    Потенциально полезным для масс-спектрометрии с искровым источником ионов является детектор ионов, использующийся при исследовании изотопных отношений методом вторичной ионной эмиссии (Андерсен и др., 1964). Прибор настраивается так, что два измеряемых изотопа располагаются по разные стороны от оптической оси прибора (см. рис. 13.11). На отклоняющие пластины подается переменный потенциал таким образом, что изотопы последовательно направляются на щель коллектора, расположенную на оптической оси. На выходе прибора расположен фотоумножитель, сигналы которого синхронно с переключением пиков направляются в соответствующие ячейки. Отсчеты накапливаются и затем производится измерение изотопных отношений. В этом важном для развития метода устройстве амплитуда переключения достаточно мала, так что можно осуществить накопление только ионных токов, соответствующих двум изотопам, массы которых отличаются от средней меньше чем на 7,5%. Во время переключения пиков на счетчик подается запирающий импульс длительностью 50 мкс, так что в заданном интервале можно измерять любые две линии, несмотря на то что между ними могут располагаться другие пики. [c.182]

    Другие проблемы, возникающие при использовании электронных умножителей, связаны с тем, что коэффициент усиления для различных видов ионов неодинаков вследствие того, что эффективность эмиссии вторичных электронов из первого динода зависит от массы, заряда, электронной конфигурации и энергии ионов. Халл (1969) использовал общепринятое предположение, что коэффициент усиления обратно пропорционален квадратному корню из массы падающих частиц. Однако следует отметить, что при высоких напряжениях, которые используются для ускорения ионов в масс-спектрометрах с искровым источником ионов, эмиссия вторичных ионов нелинейно зависит от перечисленных факторов, причем в основном эти зависимости недостаточно хорошо изучены (Каминский, 1965 Гоффект и др., 1966). По-видимому, сканирование масс-спектра или переключение пиков (см. ниже) путем измерения магнит- [c.145]


    Последующие ошибки могут быть связаны с самой системой регистрации. Например, при собирании ионов коллектором приемника энергии ионов вполне достаточно, чтобы выбить из материала коллектора электроны (вторичная электронная эмиссия), в результате чего потенциал коллектора повышается и, следовательно, вносится систематическая ошибка. В общем случае эффективность вторичной электронной эмиссии зависит от энергии иона и свойств материала коллектора. Полностью этот эффект не изучен. Некоторую интерпретацию эджекций из металлической поверхности дал Гош [99] и Измайлов [100]. Кроме того, анализируемое вещество можег осаждаться на коллекторе в виде нейтральных молекул, изменяя тем самым характеристики материала коллектора, что также влечет за собой ошибку. Причиной такого эффекта при регистрации изотопов урана может служить тот фа1кт,1у что когда ионы иГс, + с высокой энергией ударяются о поверхность коллектора, получается разбрызгивание материала коллектора с освобождением нейтральных молекул и положительных ионов. В результате этого ионы иГа + будут формировать монослой ир4. Сама электронная схема также не свободна от искажений, особенно в случае применения электронных умножителей. Нелинейность входных высокоомных сопротивлений (зависимость от напряжения), вариации коэффициента усиления усилителя постоянного тока, погрешность компенсационных схем [72, 76] и выходных регистрирующих приборов —все эти ошибки приводят к большому искажению результатов при измерении распространенности изотопов элементов. Иногда приходится калибровать отдельные узлы масс-спектро-метра. Например, сул1мар1Ное искажение, соответствующее регистрационной части маос-спектро-метрической установки, в которое входят все погрешности индекса (И) (согласно нашей схеме), может быть учтено либо при помощи калибровки прибора моноизотопами [97], либо посредством специального приспособления в предусилителе приемника, состоящего из двух эталонных емкостей, после-10- 147 [c.147]

    В первых главах рассматриваются физика вакуумного разряда, а также основные принципы масс-спектрометрии с двойной фокусировкой и измерение ионных токов при помощи электрической или фотографической систем регистрации. Далее следуют главы, в которых обсуждаются проблемы количественной расшифровки масс-спектров и определение на основании полученных данных действительного состава образца. Подробно изложены специальные приемы анализа изоляторов, порошков, микрообразцов, биологических образцов, агрессивных, радиоактивных и легкоплавких веществ, а также определение газов в твердых телах. Последние главы посвящены использованию лазера в масс-спектрометрии для анализа твердых тел и исследованию поверхности главным образом методом вторичной ионной эмиссии. [c.8]


Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Эмиссия

Эмиссия Эмиссия



© 2025 chem21.info Реклама на сайте