Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические методы, направление развития

    При проведении химических реакций, а также при выделении веществ из смеси в чистом виде и поныне исключительно важную роль играют препаративные методы осаждение, кристаллизация, фильтрование, сублимация, перегонка и т. п. В настоящее время многие из этих классических препаративных методов получили большое развитие и являются ведущими в технологии получения особочистых веществ и монокристаллов. К ним относятся методы направленной кристаллизации, зонной перекристаллизации, вакуумной сублимации, фракционной перегонки. Одна из примечательных особенностей современной неорганической химии — исследование особочистых веществ на монокристаллах. [c.8]


    Химический синтез пептидов чрезвычайно важен, тем более что разработанные для этого методы могут быть применены также для синтеза белков. Между первым получением пептида Фишером и Фурне (глицилгли-цин, 1901 г.) и автоматическим синтезом полипептидов и белков в наше время лежит три четверти века интенсивного развития органической химии. Разработаны многочисленные методы направленного синтеза пептидов. Важнейшие из этих методов рассмотрены в этой главе (наряду с методами защиты амино- и карбоксильных групп и функций боковых цепей). Обсуждаются также проблемы рацемизации, стратегии и тактики пептидного синтеза, принципы образования циклических пептидов. В конце главы помещен обстоятельный обзор важнейших пептидов, встречающихся в природе, причем наряду с описанием соединений и получением их с помощью химического синтеза уделяется внимание связи строения и действия. [c.92]

    Основным направлением развития фармацевтического анализа в настоящее время является дальнейшая разработка и усовершенствование физико-химических методов анализа фармацевтических препаратов и лекарственных форм и широкое внедрение их в практические учреждения (аптеки, контрольно-аналитические лаборатории), разработка простых, доступных для внутриаптечного контроля методов анализа сложных лекарственных смесей, развитие и совершенствование анализа новых лекарственных препаратов, особенно из группы сложных природных соединений с сильным биологическим действием (гли-козиды сердечного действия, гормоны, витамины, антибиотики), изучение условий хранения химико-фармацевтических препаратов, готовых лекарственных средств, галеновых препаратов в различных зонах страны, а также изучение влияния высокополимерных соединений (упаковочный материал) на действие лекарственных средств, дальнейшее развитие и совершенствование биофармацевтического анализа. [c.14]

    Разработка энергетических балансов — основной метод планирования энергоснабжения химических предприятий Их основное назначение сводится к установлению требуемых ра меров и соотношений в потреблении, производстве и получении различных видов энергии и топлива, к учету взаимосвязи энергетики предприятия с его производством и энергетикой района, к отражению внутренних связей между отдельными частями энергетического хозяйства, к определению направлений развития и рационализации последнего в планируемом периоде. [c.310]


    Поэтому современная аналитическая химия испытывает сильное влияние экспериментальной физики и физической химии. Прогресс этих наук, чрезвычайное разнообразие и точность их методов изучения материи Ез значительной степени изменяют основное направление развития аналитической химии. Все большее значение приобретают новые физические и физико-химические (инструментальные) методы анализа, широко применяемые в различных областях науки, техники и промышленности, и, поскольку эти методы решают задачи химического анализа, они составляют одну из неотъемлемых частей аналитической химии. [c.17]

    В решении главных задач физико-химической механики дисперсных систем — создании новых материалов с заданными свойствами и развитии методов направленного регулирования свойств дисперсий в технологических процессах центральной является проблема познания взаимосвязи устойчивости коагуляционных структур, закономерностей их формирования с дисперсностью и лиофильностью структурообразующего компонента. Особенно велика роль природы поверхности дисперсной фазы ири получении агрегативно устойчивых суспензий в органических средах, а также ири действии высоких температур, электролитов и других коагулирующих агентов. В таких случаях изменение дисперсности и природы поверхности твердой фазы увеличением или уменьшением числа несовершенств структуры и дислокаций, аморфизацией поверхностного слоя, заменой одних активных центров другими — важнейший фактор, который определяет и регулирует структурно-реологические характеристики пространственных коагуляционных структур и микроструктуры материалов, полученных на их основе. [c.79]

    Аналитическая химия — одна из основных химических дисциплин. Ее задачи и цели — обучить студентов методам определения состава вещества. В связи с широким применением органических реагентов, индикаторов, экстрагентов, органических растворителей, ионитов аналитическую химию необходимо изучать на основе не только неорганической, но и органической химии. Современное развитие физики и физической химии меняет направление аналитической химии в сторону использования физических и физико-химических методов анализа. Это, в частности, нашло отражение в Государственной Фармакопее СССР IX и X изданий с начала 60-х годов. [c.3]

    НИР кафедры Синтез полимеров развиваются по теме Разработка научных основ создания новых функциональных полимеров. На кафедре накоплен опыт в разработке полимеров, содержащих в своей структуре химически активные функциональные группы, в исследовании их структуры, морфологии и показана перспективность их применения в ряде приоритетных областей развития науки и техники, таких как мембранная технология, микроэлектроника, биотехнология, экология. Основной целью работ является разработка методов направленного синтеза и модификации полимеров и материалов на их основе с заданной структурой (включая наноструктуру) и морфологией. [c.114]

    Лаблюдаемый в последнее время быстрый научный и техниче- ский прогресс в области химии м химической технологии органических и неорганических веществ вызывает острую необходимость дальнейшего развития аналитической химии и разработки новых более эффективных химических, физических и физико-химических методов анализа, соответствующих современным требованиям науки и производства. Одним из перспективных путей развития аналитической химии является направление, которое связано с разработкой теории и практики методов анализа, основанных па использовании реакций, протекающих в неводных растворах [1—26]. Основное преимущество использования неводных растворителей в качестве сред для определения различных веществ состоит в том, что в среде неводных растворителей можно дифференцированно (раздельно) титровать смеси электролитов, которые в водном растворе характеризуются близкими значениями р/С, например смеои изомеров, смеси соединений одного гомологического ряда, смеси кислот, оснований и т. д. [c.5]

    ОБЩИЕ НАПРАВЛЕНИЯ РАЗВИТИЯ МЕТОДОВ ХИМИЧЕСКИХ ОЧИСТОК В СССР [c.5]

    Как правило, поддержание стабильных и достаточно низких температур хранения при любой системе охлаждения не решает всех вопросов сохранности сырья, так как микроорганизмы и плесени при этих температурах свободно развиваются в холодильных камерах. Поэтому сочетание необходимых температурных режимов и методов, направленных на подавление развития микроорганизмов, способно создать требуемые условия сохранности растительного сырья Каждый вид сырья требует индивидуального выбора химических средств защиты, их концентрации в воздухе и времени воздействия, что предусматривается соответствующими технологическими инструкциями, но при этом холодильное хранение должно создать условия, при которых потери сырья от усушки и гнили будут минимальными. [c.145]


    В настоящее время перед биологической наукой поставлена задача — обеспечить преимущественное развитие научных исследований по следующим основным направлениям разработка методов генетической и клеточной инженерии, создание на их основе новых процессов для биотехнологических производств с целью получения принципиально новых пород животных, форм растений с ценными признаками разработка новых методов и средств диагностики, лечения и профилактики наследственных заболеваний разработка научных основ инженерной энзимологии разработка и внедрение новых биокатализаторов (в том числе иммобилизованных) и оптимизация с их помощью биотехнологических процессов получения химических и пищевых продуктов исследования структуры и функции биомолекул клетки изучение молекулярных и клеточных основ иммунологии, а также генетики микроорганизмов и вирусов, вызывающих заболевания человека и животных, создание методов и средств диагностики, лечения и профилактики этих заболеваний исследования молекулярно-биологиче-ских механизмов канцерогенеза, природы онкогенов и онкобелков, их роли в малигнизации клеток и создание на этой основе методов диагностики и лечения опухолевых заболеваний человека исследования проблем биоэнергетики, питания, психики и молекулярных основ памяти и деятельности мозга. Таким образом, можно наметить следующие главные направления развития исследований в области биологической химии на ближайшую и отдаленную перспективу, так называемые горизонты биохимии  [c.18]

    В практике молекулярной хроматографии наряду с га-зо-жидкостным все большее применение находит адсорбционный вариант. Это обусловлено созданием, разработкой и внедрением ряда высокоэффективных адсорбентов с достаточно однородными и разнообразными по химическому составу поверхностями, таких, как графитированные сажи, цеолиты, геометрически и химически модифицированные силикагели, пористые стекла и др., а также развитием раз- личных методов направленного синтеза адсорбентов с заданным комплексом свойств и разнообразных приемов Модифицирования поверхностей твердых адсорбентов. [c.3]

    Разнообразие процессов промышленного органического синтеза определяет различие требований к химическим свойствам разных видов нефтехимического сырья, используемого в этой отрасли химической промышленности. Спрос на это сырье не удается обеспечить за счет тех веществ, которые входят в состав сырой нефти и получаются простым фракционированием и очисткой. Отсюда возникает необходимость путем искусственного преобразования углеводородов нефти увеличить выход наиболее ценных легких углеводородов и придать им требуемые свойства путем изменения их химической структуры. Методы таких преобразований нефтепродуктов должны непрерывно совершенствоваться в соответствии с направлениями развития нефтехимии. Простейшим промышленным приемом преобразования тяжелых углево- [c.56]

    А. Направления развития химических методов [c.538]

    А. НАПРАВЛЕНИЯ РАЗВИТИЯ ХИМИЧЕСКИХ МЕТОДОВ [c.538]

    Для успешного развития почти всех наметившихся направлений синтеза меченых веществ необходима разработка и усовершенствование методов каталитического управления, что в свою очередь требует систематических работ но катализу реакций горячих атомов, по катализу изотопного обмена атомами и группами как между молекулами, так и внутри молекул, по катализ в радиационной химии. Необходимо изучить кинетику и найти методы каталитического регулирования ряда плохо изученных химических методов синтеза, получивших новый интерес в связи с их значением для нолучения меченых веществ. Значение каталитических методов еще больше возрастает в связи с необходимостью получения молекул с разным положением метки, с разным числом меченых атомов в молекуле и с меткой по двум и более элементам. Рассмотреть методы решения этих задач в рамках настоящего доклада пе представлялось возможным. [c.421]

    Первое совещание механиков и химиков-технологов состоялось в ноябре 1971 г., на котором механики рассказывали об основных достижениях современной аэродинамики, методах моделирования аэродинамических процессов, а химики-технологи — о наиболее распространенных в промышленности технологических процессах и о главных трудностях, с которыми они сталкиваются. Были выработаны общие точки зрения по важнейшим направлениям развития химической технологии и принят ряд решений. [c.5]

    Гидратная теория Д. И. Менделеева явилась основой современной теории растворов. Она получила свое дальнейшее развитие в работах И. А. Каблукова и В. А. Кис-тяковского, открывших процесс сольватации (гидратации) ионов. Развитие этого направления позволило применить разнообразные физико-химические методы для выяснения закономерностей образования соединений растворенных веществ и растворителей (А. Ф. Капустинский, Е. П. Гапон и др.). [c.210]

    Современное направление нефтеперерабатывающей промышленности характе ризуется быстрым развитием промышленности индивидуальных углеводородов и широким применением химических методов переработки нефти. [c.5]

    Приведенные выше примеры иллюстрируют основные направления развития аналитической реакционной газовой хроматографии. Методы аналитической реакционной газовой хроматографии широко применяются в различных областях газовой хроматографии анализ сложных смесей, идентификация неизвестных компонентов, детектирование, расширение области применения газовой хроматографии. Дальнейшее развитие аналитической реакционной газовой хроматографии, по нашему мнению, будет происходить как путем разработки общих приемов применения химических реакций в газо-хроматографическом анализе (характерной особенностью этого направления является применение нескольких различных химических превращений в одном анализе), так и путем использования новых реакций в известных методах. [c.16]

    Второе направление — развитие доступных методов определения как отдельных компонентов сточных вод, так и суммарного содержания различных групп органических веществ, методов, с помощью которых можно непрерывно следить за ходом очистки сточной воды и оценить ее результат. Эти методы и описываются в данном разделе. Основной путь развития второго направления — создание методов выделения из воды органических веществ при одновременном разделении их на группы соединений, связанных друг с другом общностью их физических или химических свойств. Примером таких разделений на группы могут служить схемы анализа в разд. 9.1. Подобных схем разделения надо разработать еще много, более узких, применительно к характеру загрязнения [c.253]

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]

    Следует отметить, что биотехнологические методы при решении проблем экологии и охраны окружающей среды применяются пока в существенно меньших масштабах, чем они того заслуживают. Однако непрерывное ужесточение требований к качеству природной среды, несомненно, должно способствовать тому, что экологическая биотехнология в недалеком будущем займет свое законное место в проектах и программах, целью которых являются защита окружающей среды от загрязнений, рекультивация земель сельскохозяйственного назначения, восстановление техногенно нарушенных природных ландшафтов и т,д При развитии этого направления необходимо исходить из использования пp фoдныx микробных штаммов, которые затем в той шш иной степени могут быть модифицированы методами генной инженерии. Биологическое разложение загрязняющих веществ целесообразно сочетать с другими физическими и химическими методами обработки. [c.190]

    Изменяя режимные параметры процесса, групповой и компонентно-фракционный состав системы, изменяем структуру квазичастиц и их реакционную способность. Используя представления о непрерывном изменении свойств многокомпонентных кинетических сред, исследованы процессы химической конденсации высокомолекулярных нефтяных фракций, а также полимеризация полиолефинов в нефтяных дисперсных системах. Найдены эффетстивные кинетические параметры процесса На основе этого были разработаны приемы синтеза ряда асфальто-смолистых олигомеров из отходов нефтехимии и нефтяных остатков и многокомпонентных растворителей [43] Предложены направления развития методов направленного синтеза многокомпонентных систем. На рис 5.7,5 8 приведены варианты направленного синтеза ряда сложных систем-растворителей для АСВ призабойной зоны пласта и многокомпонентных олигомеров. [c.114]

    Совершенствование системы управления на современном этапе предусматривает внедрение хозяйственного расчета в органы управления. Хозрасчет — метод управления социалистическим хозяйством на принципах демократического централизма, обеспечивающий правильное сочетание централизованного планового руководства с развитием хозяйственной инициативы и самостоятельности предприятий. Внедрение хозяйственного расчета будет способствовать ускорению НТП, повыщению производительности труда, снижению издержек производства и увеличению доходов. В химической промышленности наибольшее распространение хозяйственный расчет получил во втором звене — ВПО. ВПО и подчиненные ему предприятия, научно-исследовательские и проектные организации образуют единый производственно-хозяйственный комплекс, который действует на началах хозяйственного расчета, обеспечивая доходами от реализации продукции полное возмещение затрат на ее производство, расходов на создание, внедрение и освоение новой техники, содержание аппарата управления, развитие подотрасли (принцип самоокупаемости), а также прибыль для взноса в государственный бюджет. За ВПО закрепляются централизованные фонды и резервы (фонды материального поощрения, соци-ально-культурных мероприятий и жилищного строительства, развития производства, единый фонд развития науки и техники и др.). Это позволяет концентрировать финансовые и другие ресурсы на главных направлениях развития и технического перевооружения подотрасли, способствует выравниванию технического уровня производства на подчиненных предприятиях. [c.175]

    В соответствии с вышеизложешгам дальнейшее развитие методов кибернетики и их использования применительно к объектам химической технологии направленно на решение новых задач, требующих как совершенствования методологии гак и новых подходов к профаммно-алгоритмическому обеспечению. [c.17]

    Структурные теории твердого тела — только что появившаяся область знаний. Иногда ее называют химией твердого тела , химией твердого состояния , но она, с другой стороны, является также и физикой твердого тела, так как в основном оперирует физическими понятиями и использует физические методы исследования. Это одно из наиболее перспективных направлений развития структурной химии, ибо оно обещает стать реальной основой неорганического синтеза. До сих пор неорганическая химия, подобно органической химии, основывалась на атомно-молекулярпом учении. Но это было грубой идеализацией, так как в отличие от органических веществ подавляющее большинство неорганических соединений представлено не совокупностями молекул, а реальными кристаллами. Неорганическая химия поэтому не имела таких успехов в синтезе химически индивидуальных веществ, каких достигла органическая химия она успешно решала задачи синтеза лишь тех соединений, которые существуют в форме совокупности молекул, например синтеза аммиака. Получение же оксидов, сульфидов, селенидов и многих других солей, а также интерметаллических соединений осуществлялось отнюдь не по принципу синтеза запроек-гироваиных структур, как это было в органическом синтезе, а по принципу стехиометрии, т. е. не в русле структурной химии, а в русле учения о составе — на уровне первой концептуальной системы. [c.99]

    Первые эксперименты, в которых удалось наблюдать сигнал ядерного резонанса в конденсированных средах, были проведены в 1945 г. независимо Блохом и Парселлом [1.1, 1,2 ]. Следующим важным шагом было открытие химического сдвига - величины, которая характеризует электронное окружение рассматриваемого ядра. В металлах это явление (изменение резонансной частоты) впервые наблюдал Найт [1.3], а в жидкостях —Арнольд [1.4]. Это открытие оказало колоссальное влияние на развитие не только метода ядерного резонанса, но и других областей физики. Информация о частоте сигнала ЯМР дает возможность получить представление об электронном окружении ядра и о структуре химических соединений. На рис. 1.1 приведен спектр ЯМР на ядрах Н этанола [1.4 ], Этим спектром была открыта область исследований, известнаякак ЯМР высокого разрешения в жидкостях, К этой области относится подавляющее большинство всех экспериментов по ЯМР, проводимых в химии, биологии и медицине. Получение изображений с помощью ЯМР (ЯМР-томография) основано на этом явлении в жидкостях. Однако в данном случае химический сдвиг рассматривается как мешающий фактор, поэтому разрабатываются разнообразные методы, направленные на уменьшение различия в его значениях. Строго говоря, высокое разрешение может быть достигнуто лишь в жидкостях, но с помощью специальных экспериментальных методик может быть получена разнообразная полезная информация и для твердых тел. Недостатком этого метода является его низкая чувствительность. Этот недостаток частично был устранен введением Рихардом Эрнстом в 1966 г. [1,5 ] фурье-спектроскопии и появлением приборов со сверхпроводящим магнитом. Наибольшие успехи в применении метода ЯМР были достигнуты в исследованиях биологических макромолекул, что стало [c.12]

    До недавнего времени в качестве ингибиторов коррозии цинка использовались ионы ртути. Сейчас применение ионов металлов как ингибиторов (проингибиторов) коррозии становится одним из наиболее интересных и перспективных направлений развития и совершенствования метода ингибирования, причем не только применительно к химическим источникам тока. [c.83]

    Характеризуя общее направление развития глинохозяйства, необходимо отметить все большую специализацию его и превращение в кооперированное с буровой производство химико-технологического профиля, перерабатывающее природное сырье и выпускающее продукцию — буровой раствор, существенно отличающуюся от исходных материалов. Поддержание качества растворов, меняющихся в процессе бурения, и придание им новых свойств также является своего рода переработкой их физико-химическими методами. [c.14]

    Дальнейшие усовершенствования метода ТВА связаны с автоматизацией обработки результатов измерений, что является общим направлением развития приборов, в которых используется метод свободнозатухающих колебаний. Так, соединение описанного выше прибора (с оптическим датчиком колебаний) с ЭВМ привело к созданию одного из наиболее совершенных современных измерительных устройств, которое может применяться для термомеханических исследований как стабильных термопластов, так и материалов, изменяющихся во времени под действием химических превращений, температуры и т. п. [17]. [c.187]

    При известном распределении коэффициента турбулентной диффузии в жидкости 1)т вблизи границы раздела фаз можно рекомендовать альтернативный вариант учета влияния турбулентности на скорость массопередачи с химической реакцией (разд. 1.4). Подобное направление развито М. X. Кишиневским и А. Ф. Туришевым [18, 61], а за рубежом — О. Сенделлом с сотрудниками [19—21]. Последние разработали метод расчета массопередачи с необратимой химической реакцией первого и второго порядков с учетом коэффициента турбулентной диффузии /)т. [c.46]

    Механические перемешивающие устройства позволяют обеспечить равномерное распределение энергии в объеме аппарата и наиболее эффективно осуществить преобразование электрической энергии в механическую. Акад. Н. М. Жаворонков и член-корр. АН СССР П. Г. Романков [42] определили основные направления развития ряда производств химии и нефтехимии, поставили актуальные современные задачи по фундаментальному исследованию химических реакций и технологических процессов, их математическому описанию и созданию новых методов инженерного расчета. Для совершенствования конструкций аппаратов с перемешивающими устройствами была поставлена задача дальнейшего изучения путей интенсификации гидродинамических процессов и процессов тепло- и массообмена, углубления исследований турбулентных режимов перемешивания и влияния турбулентных пульсаций на эффективность проектируемого оборудования. Решение этих задач позволит создать единый метод расчета и выбора аппаратов с перемешивающими устройствами и разработать условия для комплексной стандартизации и унификации аппаратов, для увеличения их серийного выпуска, для повышения их технического уровня, качества и надежности [15, 16]. [c.5]

    Современная коллоидная химия развивается главным образом в двух важнейших направлениях во-первых, в направлении изучения свойств дисперсных фаз и механизма их взаимодействия с различными дисперсионными средами для разработки теории лиофильности и, во-вторых, в направлении развития физико-химической механики, изучающей процессы структурообразования в дисперсных системах и методы управления их механическими свойствами. Следует кратко остановиться на некоторых достижениях и задачах этих двух направлений применительно к таким объектам коллоидной химии, как дисперсные, главным образом, глинистые минералы, которые представляют большой интерес для получения катализаторов, адсорбентов, наполнителей, высококачественных бурювых растворов, строительных материалов и т. д. [1—4]. .  [c.3]

    В настоящее время известно два основных направления расширения области анализируемых соединений в газовой хроматографии 1) использование в качестве подвижной фазы в газовой хроматографии паров при температурах и давлениях, превышающих критическое (сверхкритическая, флюидная хроматография), а также газовая хроматография с органическими элюентами и неорганическими паровыми и 2) использование направленных химических превращений с целью превращения нелетучих соединений в летучие, а также неустойчивых соединений в стабильные. Хотя первое решение является более общим, его использование требует специального, более дорогого и сложного оборудования, и, хотя метод флюидной хроматографии известен более 15 лет, пока ни одна фирма не выпускает стандартное оборудование для этого метода. С другой стороны, предварительные (дохроматографические) превращения компонентов анализируемых проб в летучие стабильные производные могут быть реализованы достаточно быстро при использовании стандартных химических реактивов и несложной стеклянной посуды. Химические методы близки и понятны химикам и биохимикам, которые являются, по-видимому, основной группой специалистов, широко использующих газохроматографический метод. Многие фирмы производят стандартные реактивы для проведения указанных превращений, поэтому второе направление расширения области газовой хроматографии получило наибольшее развитие, и методы химического образования производных (ХОП), в первую очередь для органических соединений, широко используют в хроматографической практике. [c.12]


Смотреть страницы где упоминается термин Химические методы, направление развития: [c.28]    [c.7]    [c.10]    [c.52]    [c.239]    [c.10]    [c.4]   
Современная аналитическая химия (1977) -- [ c.536 ]




ПОИСК





Смотрите так же термины и статьи:

Химическая направленность

Химическая развитие

Химические направление



© 2025 chem21.info Реклама на сайте