Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физико-химические свойств вакуумные

Рис. 2.7. Зависимость физико-химических свойств вакуумного газойля от глубины его отбора Рис. 2.7. <a href="/info/651293">Зависимость физико-химических свойств</a> <a href="/info/77224">вакуумного газойля</a> от глубины его отбора

    Изменение же выхода н физико-химических свойств вакуумного дистиллята  [c.18]

Таблица 24. Физико-химические свойства вакуумных дистиллятов и остатков Таблица 24. Физико-химические свойства вакуумных дистиллятов и остатков
Таблица 65. Физико-химические свойства вакуумных масел Таблица 65. Физико-химические свойства вакуумных масел
    В учебнике кратко изложена история развития нефтеперерабатывающей промышленности СССР, рассмотрены физико-химические свойства углеводородных газов, нефтяных фракций и нефтей, описаны подготовка их к переработке, методы выделения газового бензина из нефтяных газов, прямая перегонка нефтей на атмосферных и атмосферно-вакуумных установках, вторичная перегонка нефтяных фракций. Значительное внимание уделено аппаратурному оформлению технологических процессов,- их технико-экономическим показателям а также вопросам техники безопасности и охраны труда. [c.4]

    С целью снижения температуры застывания, вязкости и доведения других показателей качества нефтяных остатков до требуемых норм в качестве разбавителей были использованы легкие и тяжелые дистилляты прямой перегонки и вторичных крекинг-процессов, вырабатываемые на технологических установках АО Ново-Уфимский НПЗ , Уфанефтехим и Уфимский НПЗ атмосферно-вакуумной перегонки, каталитического и термического крекингов, висбрекинга и замедленного коксования. Результаты исследования их физико-химических свойств и группового углеводородного состава приведены в табл.2.6...2.8. [c.51]

    Исследование углеводородного состава и физико-химических свойств компонентов судового топлива, полученных глубокой вакуумной перегонкой сернистого мазута [c.67]

    Анализ физико-химических свойств полученных тяжелых вакуумных газойлей показал, что все фракции удовлетворяют требованиям на судовое топливо для тихоходных дизелей по всем показате- [c.68]


    Для установления эффективности действия сульфонатных (и других) присадок в зависимости от группового углеводородного состава сырья были исследованы масляные фракции 350—420 °С и 420—500 °С и остаточные выше 500 °С, выделенные вакуумной перегонкой из мазутов трех нефтей, резко различающихся по физико-химическим свойствам и углеводородному составу (бала-ханская масляная и балаханская тяжелая нефти, а также нефть месторождения Нефтяные камни). Углеводородный состав фракций был определен адсорбционной хроматографией на крупнопористом силикагеле АСК [15, с. 73]. В результате исследования структурно-группового состава и свойств отдельных групп углеводородов, выделенных из этих фракций, было установлено, что парафино-нафтеновые углеводороды из фракций балаханской нефти являются лучшим сырьем для синтеза присадок, чем те же углеводороды, выделенные из фракций двух других нефтей, причем наиболее низким качеством отличаются парафино-нафтеновые углеводороды балаханской тяжелой нефти. [c.72]

    Физико-химические свойства основных, наиболее часто поступающих на переработку нефтей Советского Союза, приводятся в табл. 2.5. В табл. 2.6 содержатся данные о составе углеводородных газов до С и содержании углеводородов С5, а в табл. 2.7 —о потенциальном содержании узких фракций в нефтях. В табл. 2.8 охарактеризованы прямогонные бензины и бензиновые фракции, являющиеся сырьем каталитического риформинга, а в табл. 2.9 —средние дистилляты (керосиновые и дизельные фракции). Табл. 2.10 содержит информацию о свойствах остатков выше 350 С и выше 500°С и вакуумного дистиллята, используемого в качестве сырья каталитического крекинга (или гидрокрекинга). [c.65]

    Физико-химические свойства остатков вакуумной перегонки нефтей - сырья для окисления [c.51]

    В вакуумных колоннах давление ниже атмосферного (создано разрежение), что позволяет снизить рабочую температуру процесса и избежать разложения продукта (разделение мазута, производство стирола, синтетических жирных кислот и др.). Величина остаточного давления в колонне определяется физико-химическими свойствами разделяемых продуктов и главным образом допустимой максимальной температурой их нагрева без заметного разложения. [c.220]

    Вес сажи составлял 45-50 % из расчета на испаренный фафит. Содержание фуллеренов в саже для СЭ составляло 12, 16 и 13 % для СЭУ — 17, 16.5 14.5 % и для ГС — 8, 7.5 и 7 %, соответственно при 65, 70 и 75 А. Во всех случаях наблюдается уменьшение выхода фуллеренов при увеличении силы тока. Использование более чистых графитовых электродов марки СЭУ логично приводит к большим выходам фуллеренов в саже. Тогда как электроды марки ГС требуют длительного вакуумного отжига (1.5-3 часа) при 900-1000 °С, но выход фуллеренов при этом составляет только 7-8 %. При увеличении силы тока отмечается уменьшение энерговклада на испарение фафита. Например, для электродов марки СЭУ энерговклад составлял 3.8, 3.5 и 3.4 кВт ч/моль при 65, 70 и 75 А, что также повлияло на физико-химические свойства отмытых от фуллеренов саж. [c.151]

    В книге кратко излагаются история развития нефтеперерабатывающей промышленности Советского Союза, роль русских и советских ученых в формировании науки о химии и технологии нефти, химическая природа нефти, основные физико-химические свойства нефтей и нефтяных фракций, теоретические основы перегонки простых и сложных смесей углеводородов, конструктивное оформление и технологический расчет основной нефтеперегонной аппаратуры, классификация, описание и анализ технологических схем, условий эксплуатации и проектирования промышленных атмосферных и атмосферно-вакуумных установок для перегонки нефтей и нефтепродуктов, вопросы техники безопасности и борьбы с коррозией нефтеперегонной аппаратуры. [c.2]

    В настоящее время фондовые запасы фракций углеводородов более тяжелых, чем прямогонный бензин, рассматриваются как перспективные источники для получения олефинов. В работе имеются результаты пиролиза всех рассматриваемых нефтяных фракций (полученных из смеси арланской и Веденской нефтей), проведенного при разных условиях (таблица 3). Состав и физико-химические свойства исходных вакуумного газойля, прямогонного бензина и пироконденсатов, полученных из прямогонного бензина и вакуумного газойля, представлены в таблицах 4 и 5. [c.10]

Таблица 4 - Физико-химические свойства фракции вакуумного газойля Таблица 4 - <a href="/info/1553504">Физико-химические свойства фракции</a> вакуумного газойля

    В связи с разнообразием продуктов нефтехимии, широким диапазоном их физико-химических свойств (состав, плотность, вязкость и др.) в качестве модельных систем, характеризующих совокупность больших групп индивидуальных углеводородов и продуктов нефтехимии, были использованы продукты первичной нефтепереработки - бензин, дизельное топливо, машинное масло, вакуумный газойль, далее обобщенно называемые нефтепродуктами. [c.9]

    Ниже приведены физико-химические свойства российских катализаторов гидроочистки бензинов, а в табл. 74-катализаторов гидроочистки дизельного топлива и вакуумного газойля  [c.280]

Таблица 74. Физико-химические свойства катализаторов гидроочистки дизельного топлива и вакуумного газойля Таблица 74. <a href="/info/1167375">Физико-химические свойства катализаторов</a> <a href="/info/189207">гидроочистки дизельного топлива</a> и вакуумного газойля
    Физико-химические свойства гудрона вакуумной перегонки западносибирский нефти [c.38]

    Недостатком вакуумного, а также и компрессионного метода является использование сложных и громоздких установок. Кроме того, в вакууме неизбежно осуществляется откачка вместе с воздухом летучих компонентов индикаторных жидкостей, что, естественно, изменяет их физико-химические свойства и может сказаться на результатах контроля. [c.671]

    В табл. 1 приведены физико-химические свойства дистиллятных и остаточных продуктов, получаемых при различных процессах переработки упомянутых нефтей на Дрогобычских НПЗ. Из табл. 1 видно, что фильтраты парафинового производства и вакуумный газойль могут быть непосредственно использованы как топлива для стационарных турбинных установок. Крекинг-недогон, крекинг-остаток и мазут прямой гонки могут использоваться в качестве компонентов газотурбинных топлив. [c.108]

    Применяемые в промышленности кристаллизаторы можно разделить на три группы изогидрические, вакуумные и выпарные. Выбор той или иной конструкции зависит от многих факторов общей технологической схемы производства, физико-химических свойств раствора, производительности и т. п. [c.359]

    Благодаря этим особенностям при вакуумной плавке металла достигается улучшение физико-химических свойств [c.229]

    Все продукты, методы анализа которых рассмотрены в главе, условно разделены на 5 групп. Основными признаками отнесения продуктов к той или иной группе служили их физическое состояние, вязкость и летучесть. В первую группу (анализ топлив) включены методы анализа природных газов, бензинов, авиационных газотурбинных топлив и автотракторных дизельных топлив, а также товарных и промежуточных продуктов соответствующих фракций нефтей и других органических продуктов. Сырые нефти, вакуумные газойли, тяжелые моторные и котельные топлива, присадки к маслам, мазуты и битумы по своим физико-химическим свойствам и методам анализа ближе к смазочным маслам, поэтому их анализ рассмотрен в следующем параграфе. В третью группу продуктов входят консистентные смазки и отложения. Под термином отложения подразумевается группа веществ, выделяющихся по разным причинам из нефти и нефтепродуктов в процессе их добычи, переработки, хранения и применения. В четвертую группу объединены высокомолекулярные полимеры, которые при комнатной температуре представляют собой твердое вещество. Для анализа низкомолекулярных, жидких полимеров следует пользоваться методами анализа масел. Наконец, в пятой группе рассматриваются методы анализа нефтяных коксов и углей. [c.161]

    На ОАО Ново-Уфимский НПЗ внедрена многоступенчатая инжекторная система создания вакуума в вакуумной колонне, работающей по вышеприведенной схеме. Замена рабочего тела осуществляется постоянно и постепенно. Подпитка системы свежей порцией рабочего агента (фракция дизельного топлива 280-350 °С) и удаление насыщенного агента составляет 20-30 % циркулирующего объема. Этого достаточно для сохранения физико-химических свойств рабочего агента, которые изменяются по мере насыщения легкими углеводородами и сернистыми соединениями. Выводимый из циркуляционного контура создания вакуума рабочий агент направляется на гидроочистку. [c.123]

    Для современных промышленных установок, перерабатывающих типовые восточные нефти, рекомендуются следующие фракции, из которых составляются материальные балансы переработ-. ки бензин 62—140°С (180°С), керосин 140 (180)-240°С, дизельные топлива 240—350 °С, вакуумные дистилляты 350—490 °С (500 °С), тяжелый остаток — гудрон >490(500 °С). Нефти сильно различаются по фракционному составу. Некоторые нефти богаты содержанием компонентов светлых, и количество в них фракций, выкипающих до 350 °С, достигает 60—70 вес. %. Фракционный состав нефтей играет важную роль при составлении и разработке технологической схемы процесса, расчете ректификационной системы и отдельных аппаратов установки. Температуры выкипания отдельных фракций зависят от физико-химических свойств, нефти. Последние учитываются при разработке и выборе схем первичной переработки, аппаратурном и материальном оформлении установки. Так, при переработке нефтей, содержащих серу, требуются дополнительные процессы гидроочистки для обессеривания нефтепродуктов, а для парафинистых нефтей — депарафинизацион-ные установки по обеспарафиниванию фракций, особенно кероси-но-газойлевых. Для проектирования новых установок необходимо разработать соответствующий регламент и получить нужные рекомендации. [c.23]

    Экспериментальные исследования процессов дня прямого гидрообес-серивания мазутов показали большую зависимость их эффективности от компонентного состава и физико-химических свойств остаточного сырья. Анализ имеющихся данных об уровне развития этих процессов для облагораживания нефтяных остатков по мере утяжеления перераба-тьшаемого сырья показали, что для них характерно более резкое ухудшение основных показателей, чем наблюдались при развитии процессов гидроочистки нефтяных дистиллятов при утяжелении их сырья от бензина до вакуумного газойля. Как для гидроочистки дистиллятов, так и для гидрообессеривания нефтяных остатков главные показатели, определяющие эффективность и экономичность процессов — расход водорода и катализатора, давления в реакторах, производительность ехшницы реакционного объема (рис. 1.1). [c.9]

    Анализ физико-химических свойств и состава нефтяных (ктатков, выкипающих при температуре свыше 500°С, после глубокой вакуумной перегонки (см.табл.2.17) позволил сделать вывод о возможности использования их в качестве компонентов судовых топлив в смеси с КГФ каталитического крекинга и замедленного коксования. [c.74]

    При использовании регулирующих устройств на ректификационной установке, показанной на рис. 162, можно непрерывно разделять на основные компоненты смеси фенолов. На рис. 169 приведены результаты, полученные на первой стадии разгонки, при которой выделяют о-крезол и смесь м- и л-к 1езолов Для аналитического контроля было отобрано 120 проб определяли плотность кубового продукта и температуру затвердевания дистиллята. Как видно из диаграммы, в течение 22 ч работы значения температур исходной смеси, дистиллята и кубовой жидкости, а также их физико-химических свойств изменялись незначительно. Вакуум в системе регулировали с помощью автоматического стенда с вакуумным насосом (см. разд. 8.3). [c.243]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    Этаноламины разделяются вакуумной перегонкой. Все три этаноламина являются более слабыми основаниями, чем аммиак, и образуют со слабыми кислотами легко гидролизуемые соли. Физико-химические свойства этаноламинов и их растворов описаны в работе" . [c.106]

    Целью данной работы являлось исследование влия1шя добавки ПАВ к вакуумному газойлю - сырью каталитического крекинга - на пере- распределение компонентов между макрофазами по изменению их физико-химических свойств. С этой целью вакуумный газойль без добавки ПАВ и с добавкой оптимальной концентрации ПАВ в обоих случаях был разделен на центрифуге на дисперсную фазу и дисперсионную среду при температуре, соответствующей свободно-дисперсному состоянию системы. Физжо-химические характеристики дисперсионной среды и дисперсной фазы приведены в таблице. [c.32]

    Для углубленных региональных геохимических, а также для теоретических исследований по проблеме генезиса нефти может быть рекомендована схема, разработанная и успешно применяемая во ВНИГРИ (рис. 2), основой которой является вариант, подробно рассмотренный выше. В качестве обязательного элемента в нее полностью включаются операции по определению физико-химических свойств и химического состава с исследованием порфиринов. Схема предусматривает атмосферно-вакуумную разгонку на стандартные фракции до 350 °С с последующим определением во всех фракциях и неперегоняемом остатке группового углеводородного и структурно-группового состава. Кроме того, проводятся четкая ректификация отдельной пробы нефти с отбором фракций НК — 125 и 125—150 °С и определение в них индивидуального состава УВ методом капиллярной газовой хроматографии. В парафиновонафтеновых фракциях 150—200 и 200—350 °С этим же методом с применением эталонов исследуют индивидуальный состав изопреноидных УВ Сю—Сгз. Из бензиновых и средних фракций, а также из остатка, выкипающего выше 350 °С, выделяют м-алканы и методом газовой хроматографии определяют их индивидуальный состав. Схема также предусматривает широкий комплекс спек- [c.10]

    В работе приведены данные по комплексному исследованию физико-химической технологии производства нефтяных битумов, показана возможность активации сырья еще на стадии получения и подготовки продуктов вакуумной перегонки, приводящей к интенсификации битумного производства. Экспериментально установлена зависимость между степенью дисперсности и физико-химическими свойствами активированных и неахтивированных нефтяных остатков. [c.52]

    Приведенные данные пока,-зывают, что вакуумные дистилляты, полученные в лабораторных условиях и на укрупненной атмосферно-вакуумной установке, близки по основным физико-химическим свойствам, однако вследствие более низкой фракционирующей способности укрупненной пилотной установки получаемый на ней вакуумный дистиллят содержит 5,9% фракций, выкипающих до 350°, и 5,0% фракций, кипящих выше 500°. Гудроны, полученные на лабора юррюГ и пилотной установках, отличаются по своим свойствам. [c.114]

    При подборе литературы больше всего приходится пользоваться предметным указателем. В предметный указатель РЖХим входят в алфавитном порядке названия химических элементов (Алюминий Бор Кремний и т. д.), классов химических соединений (Альдегиды Амиды Кетоны Углеводы и т. п.) минералы (Бийетит Кальцит и др.) фирменные названия продуктов (Дюпональ МЕ Перлон) названия катализаторов, в том числе и фирменные названия физико-химических, свойств веществ (Вязкость Электропроводность и пр.) физико-химические константы веществ (Плотность Температура и пр.) химические и физические понятия (Давление пара Изомерия и др.) методы анализа (Колориметрия Полярография) различные физико-химические, биохимические и технологические процессы (Адгезия Испарение Конденсация Брожение Обмен веществ Ректификация Центрифугирование и пр.) химические реакции, в том числе именные (Галогенирование Нитрование Зандмейера реакция) название оборудования (Насосы вакуумные Аппараты выпарные Сушилки). Законы размещены обычно по их названиям или по фамилиям авторов (Бера закон Рауля закон) теории и правила также часто размещены по фамилиям авторов (Альдера правило Марковникова правило Кирквуда теория). Под заголовками Бактерии, Водоросли, Грибы, Животные, Моллюски, Насекомые, Растения, Рыбы, Черви помещены также латинские названия микроорганизмов, животных и растений. Наконец, в предметный указатель включены сведения об индивидуальных химических веществах неустановленного строения, но имеющих название, а также о некоторых витаминах, токоферолах и каротинах. [c.38]

    Дальнейшие работы БашНИИ Ш направлены на решение актуальных задач по углублению переработки нефти, поставленных в качестве основного направления развития нефтеперерабатырающей промышленности. Результаты этих исследовательских работ нашли отражение в статьях настоящего сборнике. Сборник включает материалы по исследованию возможности увеличения отбора светлых нефтепродуктов на установках АВТ и по новому методу определения потенциала суммы светлых нефтепродуктов. Приведены результаты экспериментального и расчетного исследования в области вакуумной и глубоковакуумной перегонки, однократного испарения нефтяных остатков. Представлены статьи по методам и аппаратуре лабораторного фрак-хщонирования высококипящих фракций нефти, по расчетным методам определения основных физико-химических свойств фракций нефти и продуктов ее разделения. [c.6]


Смотреть страницы где упоминается термин Физико-химические свойств вакуумные: [c.47]    [c.212]    [c.677]    [c.76]    [c.120]    [c.51]    [c.41]    [c.154]    [c.2]    [c.106]   
Смазочные материалы на железнодорожном транспорте (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Исследование углеводородного состава и физико-химических свойств компонентов судового топлива, полученных глубокой вакуумной перегонкой сернистого мазута



© 2025 chem21.info Реклама на сайте