Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной электрически слой

    ДВОЙНОЙ ЭЛЕКТРИЧЕСКИЙ СЛОЙ НА ГРАНИЦЕ ЭЛЕКТРОД — ЭЛЕКТРОЛИТ [c.230]

    Часть IV. Двойной электрический слой на границе электрод — электролит [c.232]

    Зная поверхностные избытки, можно, используя уравнение (11.26), определить заряд поверхности металла, а затем и емкость двойного электрического слоя. [c.245]

    Уравнение (11.40) по своему физическому смыслу эквивалентно модели, в которой двойной электрический слой в присутствии адсорбированных молекул органического вещества представлен в циде двух параллельно соединенных конденсаторов, причем между обкладками одного из них находятся молекулы воды, а между обкладками другого — молекулы органического вещества. Иначе говоря, заряд электрода q складывается из зарядов этих двух конденсаторов и q  [c.246]


    Глава 12. Двойной электрический слой на границе между электродом и электролитом [c.260]

    ИОНОВ в двойном слое в действительности невозможно, так как помимо электростатических сил, возникающих между металлом и ионами, на последние должны действовать также силы теплового молекулярного движения. При наложении этих двух сил ионы в растворе должны распределяться относительно поверхности металла диффузно —с убывающей при удалении от иее объемной плотностью заряда, подобно тому, ка < меняется с высотой плотность воздушной атмосферы. При таком строении двойного электрического слоя для выражения связи между потенциалом и плотностью заряда уже нельзя пользоваться формулой плоского конденсатора. [c.264]

    Рнс, 12,2, Строение двойного электрического слоя по Гуи — Чапману молекулярная картина (а) и изменение потенциала с расстоянием от поверхности металла в глубь раствора (6  [c.264]

    Поверхностный потенциал отражает сундествование двойного электрического слоя на границе фазы. Ои определяется работой переноса элементарного положительного заряда из глубины фазы в точку в вакууме, расположенную в непосредственной близости [c.24]

    Само существование электрокинетических явлений указывает на то, что в месте контакта твердого тела и жидкости имеется двойной электрический слой, причем и твердое тело, и жидкость обладают определенными зарядами. Движение взвешенных твердых частиц внутри жидкости, наблюдаемое при наложении электрического поля (явление электрофореза), может совершаться лишь в том случае, если твердые частицы, распределенные в жидкости, обладают зарядом. Точно так же электроосмотическое перемещение жидкости было бы невозможным при отсутствии у нее заряда, на который влияет электрическое поле. 1 азность потенциалов между точками на различных высотах трубы, в которой происходит процесс осаждения взвешенных в жидкости твердых частиц, не могла бы возникать, если бы падающие твердые частицы не несли с собой электрического заряда. Наконец, нельзя объяснить появление потенциала течения, не предположив, что жидкость обладает некоторым зарядом. [c.231]

    Существование между твердым телом и раствором наряду с общим скачком потенциала также -потенциала следует учитывать при разработке теории строения двойного электрического слоя. Эта теория должна объяснить не только причины появления элек-трокинетического потенциала, но и характер его изменения с составом раствора и, в частности, явление перезарядки поверхности. [c.234]


    По закону электронейтральности згфяд поверхности металла должен быть равен заряду раствора у границы раздела, но с обратным знаком, т. е, m = = — /L. Следовательно, уравнение (11.8) позволяет определить также заряд той части двойного электрического слоя, которая находится в растворе. [c.240]

    Значительный интерес представляет влияние, которое оказывают поверхиост-ио-активные органические вещества на строенле двойного электрического слоя и на форму электрокапиллярных кривых. Впериые этот вопрос был разработан А. Н. Фрумкиным в 1926 г. Сущность теории Фрумкина сводится к следующему. [c.245]

    При изучении электрокинетических и электрокапиллярных явлений были установлены определениьк опытные закономерности. Корректная теория строения двойного электрического слоя металл — электролит должна давать нх истолкование. Эти же факты служат критерием сираведливости тех 1ли иных вариантов теории двойного электрического слоя. [c.260]

    Было предпринято несколько понз1ток создания отвечающих действительности представлений о стрсении двойного электрического слоя на границе между металлом и раствором основные из них рассматриваются ниже. [c.261]

    Первую количественную теорию строения двойного электрического слоя на границе металл — раствор связывают обычно с именем Гельмгольца (1853). По Гельмгольцу, двойной электрический слой можно уподобить плоскому конденсатору, одна из обкладок которого совпадает с плоскостью, проходящей через поверхностные заряды в металле, другая — с плоскостью, соединяющей центры тя- кестн зарядов 1, онов, находящихся в растворе, по притянутых электростатическими силами к иоверлиости металла (рис. 12.1). Толщина двойного слоя I (т. е. расстояние между обкладками [c.261]

    Модель двойного электрического слоя, отвечающая этим простейшим представлениям, ириводит к двум возможным значениям -потенциала. Если предположить, что все заряды, находящиеся в растворе, способны перемещаться вместе с жидкостью или при движ( нии твердого тела относительно жидкости пе увлекаться вместе с ним, то -потенциал по величине -будет совпадать с -потенциалом, и его изменение с концентрацией электролита должно подчиняться формуле Нернста. Если заряды, находящиеся в растворе, при относительном движении жидкости и твердого тела связаны только с последним и перемещаются вместе с ним, то -потенциал всегда будет равен нулю. Ни одно из этих следствий, вытекающих из теории Гельмгольца, не согласуется ни с экспериментально установленным соотно1дением между (или й м.ь) и -потенциалами, ни с найденной экспериментально зависимостью -потенциала от концентрации (если не считать, что -потенциал лзожет быть равен нулю в очень концентрированных растворах электролнтов и ири определенном составе раствора, отвечающем изоэлектрической точке). Теория Гельмгольца не объясняет также причины изменения заряда повер> ности металла в присутствии поверхностно-активных веществ при заданном значении -потенциала. Вместе с тем теория конденсированного двойного слоя позволяет получить значения емкости двойного слоя, согласующиеся с опытом, а при использовании экспериментальных значений емко- [c.262]

    СТИ — физически правдоподобную толпшиу двойного электрического слоя. Для двойного слоя, отвечаюш.его по своим свойствам плоскому конденсатору, можно написать [c.263]

    Теория Гуи—Чапмана оправдывается лучше всего там, где теория Гельмгольца оказывается неприложнмой, и, наоборот, последняя дает лучшую сходимость с опытом в тех случаях, когда первая дает неверные результаты. Следовательно, строению двойного электрического слоя должно отвечать некоторое сочетание моделей, предложенных Гельмгольцем п Гуи — [c.267]

    Чапманом. Такое предпо-ложенне было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхностн раздела металл — электролит, образуя ге./1ьмгольцевскую пли конденсированную обкладку двойного слоя с толщиной, отвечающей среднему радиусу попов электролита. Здесь Штерн следовал принципам, заложенным во втором приближении теории Дебая и Гюккеля. Таким образом, успехи теории растворов в свою очередь содействовали развитию теории двойного электрического слоя иа границе электрол — электролит. Остальные иопы, входящие в состав двойного слоя внутри гел ьм гол ьцеп с ко й обкладки, по ис удерживаемые жестко на поверхности раздета, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег собственными размерами нонов. Кроме того, Штерн высказал мысль, что в плотной части двойного слоя ионы удерживаются за счет не только [c.267]

    ДВОЙНОГО электрического слоя пр иближается к модели, предложенной Гельмгольцем. В области средних концентраций, где сравнимо по величине с ЯТ Р, ее зависимость от концентрации можно выразить следующими приближенными уравнениями, вытекающими из формулы Штерна для положительных величин  [c.270]

    Теория Штерна дает качественно правильную картину двойного электрического слоя. Она широко используется при рассмотрении тех электрохимических явлений, в которых структура двойного слоя играет существенную роль. Но теория Штерна, как это отмечал сам автор, не свободна от мсдостатков. К их числу относятся невозможность количественного описания емкостных кривых — экспериментальные и расчетные кривые отклоняются друг от друга, особенно при удалении от потенциала нулевого заряда, несовместимость некоторых из ее основтых положений, например сохранение заряда в плотном слое при отсутствии специфической адсорбции, и т. д. [c.270]



Смотреть страницы где упоминается термин Двойной электрически слой: [c.28]    [c.245]    [c.249]    [c.253]    [c.262]    [c.263]    [c.265]    [c.267]    [c.268]   
Физико-химические методы анализа Издание 3 (1960) -- [ c.250 ]




ПОИСК





Смотрите так же термины и статьи:

Двойной электрический

Двойной электрический слои

Двойной электрический слой



© 2025 chem21.info Реклама на сайте