Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбции граница на электроде

    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]


    Повышение концентрации электролита сопровождается изменением ij/]-потенциала (см. 174). Поскольку при выделении водорода электродный потенциал имеет отрицательный знак, то из рис. 171 видно, что с ростом концентрации раствора i i становится более положительным. В соответствии с (187.2) перенапряжение при этом возрастает. Аналогичным образом можно проследить влияние на перенапряжение адсорбции поверхностью электрода ПАВ. При адсорбции катионов фх-потенциал становится более положительным по сравнению с его значением в отсутствие ПАВ в расгворе (см. рис. 172), что сопровождаете ростом перенапряжения. Адсорбция анионов снижает перенапряжение. При адсорбции катионов П. В действует как ингибитор — замедлитель электрохимической реакции, при адсорбции анионов — как активатор. Значительным активирующим действием обладают, например, ионы СГ и 1 . Адсорбция ПАВ на границе металл — раствор происходит в определенной для каждого вещества области потенциалов. Поэтому влияние ПАВ на перенапряжение отмечается только тогда, когда потенциал электродного процесса находится в области адсорбции ПАВ. [c.513]

    Что касается органических суперэкотоксикантов как объектов эколого-аналитического мониторинга, то исключительно низкие концентрации этих веществ в природных средах и во многих случаях электрохимическая инертность в доступной области потенциалов являются основной причиной ограниченного применения вольтамперометрии в решении проблем контроля окружающей среды. По-видимому, самым эффективным способом увеличения аналитического сигнала, позволяющим на несколько порядков снизить нижнюю границу определяемых концентраций, является предварительное концентрирование органических микрокомпонентов на поверхности электрода, как и в случае рассмотренных выше неорганических токсикантов. Существует несколько способов концентрирования органических веществ. Среди них наибольшее применение находит адсорбция на электроде [4]. Это явление широко известно в вольтамперометрии, однако обычно его считают нежелательным и всячески стараются от него избавиться. Образование адсорбционных пленок мешает протеканию электрохимических процессов и осложняет интерпретацию результатов. Развитие направления, связанного с созданием [c.286]

    Таким образом, понятие адсорбции (поверхностного избытка) в общем случае не совпадает с понятием поверхностной концентрации, т. е. количеством данного компонента, непосредственно связанным с единицей поверхности электрода.Так, поверхностная концентрация — величина всегда положительная, тогда как адсорбция может быть как положительной, так и отрицательной. Интерес представляют собой системы, в которых поверхностный избыток локализуется в пределах одного монослоя адсорбирующегося вещества и, кроме того, выполняется условие В таких системах относительный поверхностный избыток, приблизительно равный Г , мало отличается ОТ поверхностной концентрации компонента 1. Такие системы реализуются, например, при адсорбции большинства органических соединений из водных растворов, а также при адсорбции атомов водорода на границе электрод —раствор. Однако для определения поверхност- [c.19]


    Исследование двойного электрического слоя, как правило, связано с совместным изучением процессов адсорбции на границе электрод — раствор и соответствующего изменения скачков потенциала. Рассмотрим некоторые наиболее характерные примеры образования двойного электрического слоя. [c.26]

    Приведенные примеры не исчерпывают всех возможных случаев образования двойного электрического слоя, а лишь иллюстрируют взаимную связь процессов адсорбции на границе электрод — раствор и соответствующее изменение гальвани-потенциала А ф. Такого рода связь существует не только на границе металл — раствор. Например, образование двойного электрического слоя на границе раствор — воздух связано с процессами адсорбции на этой границе, которые приводят к изменению поверхностного потенциала х - Итак, исследование двойного электрического слоя — это совместное изучение процессов адсорбции и соответствующего изменения скачков потенциала. Посмотрим, как решаются эти задачи экспериментально и какие выводы можно сделать из полученных результатов. [c.29]

    Итак, метод измерения дифференциальной емкости позволяет определять п. н. 3., находить зависимость заряда поверхности от потенциала, а также рассчитывать величины адсорбции органического вещества и специфической адсорбции ионов в растворах с постоянной ионной силой. Метод применим как к жидким, так и к твердым электродам и является чрезвычайно чувствительным к любым изменениям в строении двойного электрического слоя. Последнее обстоятельство предъявляет очень высокие требования к чистоте исследуемых этим методом металлов и растворов. Существенным препятствием для использования метода измерения емкости является возможность протекания электрохимических реакций на границе электрод — раствор. [c.60]

    Таким образом, рассмотрение формы и взаимного расположения кривых заряжения позволяет сделать ряд важных качественных выводов о строении границы электрод — раствор в условиях, когда на поверхности электрода происходит адсорбция атомов водорода и кислорода. Чтобы на основе этого метода сделать количественные выводы [c.64]

    Любая электрохимическая реакция представляет собой сложный многостадийный процесс. В самом деле, реагирующее вещество из объема раствора должно вначале подойти к поверхности электрода (стадия массопереноса)f затем войти в двойной электрический слой (стадия адсорбции), а после непосредственно электрохимической стадии переноса заряда через границу электрод/раствор (стадия разряда— ионизации) продукты реакции должны десорбироваться с поверхности электрода и уйти в объем раствора (стадии десорбции и массопереноса). Во многих случаях электрохимическую реакцию сопровождают стадии химического превращения реагирующих веществ и (или) продуктов реакции, которые могут протекать как в объеме раствора вблизи электрода (гомогенные химические стадии), так и на поверхности электрода в адсорбционном слое (гетерогенные химические стадии). Кроме того, если в электрохимической реакции участвуют твердые или газообразные вещества, то процесс осложняется стадиями образования или разрушения новой фазы (например, процессы электроосаждения и электрорастворения металлов, электролиз воды и др.). [c.212]

    При сопоставлении двух границ раздела раствор — воздух и раствор — ртуть наглядно видно взаимодействие анионов с металлом при их специфической адсорбции на электроде. Кроме того, рассмотрим зависимость двумерного давления, т. е. снижения поверхностного или пограничного натяжения, от логарифма концентрации адсорбирующегося вещества. Такие зависимости называют изотермами двумерного давления. При сопоставлении Да, lg с-кривых для границы ртуть — раствор необходимо брать максимальные значения а, относящиеся к п. н. з., поскольку граница раствор — воздух соответствует незаряженной поверхности ртути. [c.93]

    В нестационарных условиях электрический ток, проходящий через границу электрод — ионная система, связан с протеканием электродного процесса (фарадеевский ток) и заряжением двойного слоя (ток заряжения). Разделение фарадеевского тока и тока заряжения встречает значительные трудности (см. 12). Если адсорбция реагирующих частиц не изменяет емкости двойного электрического слоя, то ток заряжения при наличии электродного процесса остается таким же, как и в его отсутствие. [c.143]

    В книге рассмотрены свойства и методы изучения заряженных межфазных границ. Излагаются закономерности электрохимической кинетики, связанные с подводом реагирующего вещества к поверхности электрода. Показана роль явлений массопереноса при конструировании хемотронных приборов и новых источников тока. Обсуждены закономерности перехода заряженных частиц через границу электрод/раствор. Излагаются физические основы современной квантовомеханической теории элементарного акта электрохимической реакции, особенности химических стадий в электродном процессе, механизм электрокристаллизации, многостадийные и параллельные процессы, роль явлений пассивности и адсорбции органических веществ в электрохимической кинетике, [c.2]


    Если предположить, что объем раствора не изменяется в результате процесса адсорбции, то величина Г<"> равна заштрихованной площади на рис. 1. Действительно, именно эти площади представляют собой разности в количествах компонента 1 для реальной и идеальной систем. Из уравнения (4.9) видно, что при малых концентрациях вещества 1, когда v. NJv.lN< , 1, ж т. е. в разбавленных растворах относительный поверхностный избыток также равен заштрихованной площади на рис. 1. Это означает, что в разбавленных растворах условная граница раздела, фиксируемая условием Гз = О (плоскость Гиббса), приближается к поверхности электрода. Если же условие У1Л/1/У2Л/3 1 не выполняется (достаточно концентрированные растворы), то физический смысл относительного поверхностного избытка на границе электрод — раствор становится более сложным (рис. 3). Положение плоскости Гиббса здесь определяется равенством площадей 1 = з, так как величина Гг равна нулю. Плоскость Гиббса при этом не совпадает с поверхностью электрода. Заштрихованные горизонтальными линиями площади на рис. 3 показы- [c.19]

    Приведенные примеры не исчерпывают всех возможных случаев образования двойного электрического слоя, а лишь иллюстрируют взаимную связь процессов адсорбции на границе электрод — раствор и соответствующее изменение гальвани-потенциала фр. Такого рода связь существует не только на границе металл — раствор. Например, образование двойного электрического слоя на границе раствор — воздух связано с процессами адсорбции на этой границе, которые приводят к изменению поверхностного потенциала рфо. [c.31]

    Таким образом, рассмотрение формы и взаимного расположения кривых заряжения позволяет сделать ряд важных качественных выводов о строении границы электрод — раствор в условиях, когда на поверхности электрода происходит адсорбция атомов водорода и кислорода. Чтобы на основе этого метода сделать количественные выводы о структуре поверхностного слоя платиновых металлов, необходимо использовать термодинамическую теорию водородного электрода, развитую в последние годы в работах А. Н. Фрумкина, О. А. Петрия и сотр. [c.71]

    Из рассмотренных примеров следует, что образование двойного электрического слоя всегда тесно связано с адсорбцией на границе электрод — раствор ионов и полярных молекул. Чтобы изучить строение двойного электрического слоя, помимо адсорбционных данных необходимо знать приведенные потенциалы фо и заряды поверхности электрода д. На основе этих данных далее строится модель двойного слоя, описывающая распределение заряженных частиц и потенциала в зависимости от расстояния до поверхности электрода, а эти сведения используются в теории электрохимической кинетики. [c.147]

    При сопоставлении двух границ раздела раствор — воздух и раствор — ртуть наглядно видно взаимодействие анионов с металлом при их специфической адсорбции на электроде. Кроме того, рассмот- [c.95]

    В принятой в настоящее время модели двойного слоя не учитывается частичный перенос заряда при специфической адсорбции ионов. Иначе говоря, предполагается, что специфически адсорбированные ионы сохраняют свой целочисленный заряд, характерный для объема раствора (в уравнении (VI 1.37) z — целое число). В действительности это предположение не соблюдается, когда специфическая адсорбция ионов обусловлена образованием ковалентной связи между этими ионами и поверхностью металла. Если специфическая адсорбция ионов сопровождается частичным переносом заряда, то определяемая по уравнению Липпмана (VI 1.20) величина q представляет собой не истинный (свободный) заряд поверхности металла, а характеризует так называемый полный (термодинамический) заряд электрода. Полный заряд электрода можно определить как количество электричества, которое нужно подвести к электроду при увеличении его поверхности на единицу для того, чтобы разность потенциалов на границе электрод — раствор осталась постоянной при постоянных химических потенциалах всех компонентов раствора и металлической фазы. [c.165]

    ДВОЙНОЙ ЭЛЕКТРИЧЕСКИЙ СЛОЙ И ЯВЛЕНИЯ АДСОРБЦИИ НА ГРАНИЦЕ ЭЛЕКТРОД —РАСТВОР [c.142]

    Явление адсорбции на границе раздела фаз тесно связано со вторым явлением — пространственным разделением зарядов и обусловленным этим изменением гальвани-потенциала. Рассмотрим связь этих явлений на примере ртутного электрода в водном растворе NaF. При помощи вспомогательного электрода и внешнего источника тока (рис. 49) можно в широких пределах изменять разность потенциалов 1 на концах цепи, а следовательно, и гальвани-потенциал Др ф на границе раствор — ртуть. Однако при этом происходит одновременное изменение гальвани-потенциала вспомогательного электрода Др ф, а также возникновение омического падения потенциала в объеме раствора, так что 6 i= i=6 (Д ф). Чтобы измерить изменение гальвани-потенциала исследуемого электрода (в данном примере ртутного), в систему вводят третий электрод — электрод сравнения и измеряют разность потенциалов между этим электродом и исследуемым электродом компенсационным методом или при помощи высокоомного вольтметра. При этом ток в цепи электрода сравнения практически равен нулю (за этим следят при помощи чувствительного гальванометра А- ). Следовательно, разность потенциалов Е не содержит омического падения напряжения и складывается из трех гальвани-потенциалов на границах электрод сравнения — раствор, раствор — ртуть и ртуть — металл электрода сравнения. При изменении положения делителя напряжения на внешнем источнике тока из этих трех гальвани-потенциа-лов изменяется только Др ф, а потому (Др ф)- Таким образом, [c.145]

    Таким образом, на границе электрод — раствор в результате электростатической адсорбции ионов возникает своеобразный микроконденсатор — двойной электрический слой, создающий разность потенциалов Аф. Следовательно, величина гальвани-потенциала Ар ф в этих условиях содержит три слагаемых  [c.146]

    Наиболее широко используемым растворителем является вода. Обычная водопроводная вода, несмотря на довольно сложную систему ее предварительной очистки, для непосредственного использования в электрохимическом эксперименте не годится. Во-первых, в водопроводной воде растворено значительное количество солей и кислот, которые увеличивают ее электропроводность, а кроме того, могут участвовать в электрохимических процессах на электродах. Во-вторых, в этой воде содержатся по-верхностно-активные вещества, адсорбция которых на электроде искажает данные по строению границы электрод/раствор и оказывает влияние на скорость электрохимических реакций. Таким образом, для проведения электрохимического эксперимента водопроводную воду подвергают специальной очистке. [c.24]

    Как следует из вышеизложенного, метод измерения дифференциальной емкости применим к жидким и твердым идеально поляризуемым электродам, от метод позволяет определить п. н. з. электродов, получить зависимость плотности заряда электрода, а также пограничного натяжения (или понижения пограничного натяжения) от потенциала. С его помощью можно рассчитать адсорбцию органических молекул и поверхностно-активных ионов, а также скачки потенциала в двойном электрическом слое. Вследствие высокой чувствительности метода к изменению строения и свойств межфазной границы электрод/ раствор необходима высокая тщательность проведения эксперимента. [c.179]

    Эта реакция характерна для водородного электрода. Равновесию между ионами НзО (при а+=1) и мoлeкyляpны газообразным водородом (р=1 атм) соответствует вполне определенный потенциал, условно принимаемый равным нулю. При этом потенциале имеется равновесие динамического характера, т. е. на границе электрод — раствор одновременно протекают как процесс разряда ионов гидроксония, так и процесс ионизации адсорбированного водорода, а на границе электрод газ — процессы адсорбции и десорбции водорода. При этом скорссти про-тизоположных процессов равны. Если поляризовать водородный электрод катодно, т. е. подводить к нему з ектроны, то равновесие нарушится и преимущественно будет происходить разряд ионов гидроксония. Отсюда ясно, что разряд ионов гид )оксония и выделение молекулярного водорода будут наблюдаться лишь по достижении равновесного потенциала водородного электрода, соответствующего активности иока гидроксония в растворе и давлению выделяющегося Нг, (при отсутствии перенапряжения). Этим и определяется предельное значение пол5 ризации катода при электролизе с выделением водорода. [c.613]

    Электродные процессы происходят в пределах тонкого поверхностного слоя на границе электрод — ионная система, где образуется так называемый двойной электрический слой. Поэтому механизм электродных процессов не может быть выяснен без знания структуры этого слоя. Это обстоятельство оправдывает детальное рассмотрение структуры заряженных межфазных границ в курсе кинетики электродных процессов. Построение теории двойного электрического слоя и электрохимической кинетики основывается на достижениях статистической физики, квантовой механики, теории адсорбции, теории твердого тела и других разделов теоретической физики и химии. Поэтому в настоящее время теория электрохимических процессов сделалась одним из наиболее математизированных разделов химической науки. Экспериментальное исследование строения границы раздела электрод—ионная система и возникающих на этой границе явлений во все возрастающем объеме требует использования возможностей современной электронной техники, оптики, электронографии. Впитывая достижения современной науки и техники и сохраняя свои традиционные позиции, электрохимия вместе с тем прокладывает себе путь в области кибернетики, проблем сохранения чистоты окружающей среды, молекулярной биологии. [c.7]

    Таким образом, понятие адсорбции (поверхностного избытка) в общем случае не совпадает с понятием поверхностной концентрации, т. е. количеством данного компонента, непосредственно связанным с единицей поверхности электрода. Так, поверхностная концентрация — величина всегда положительная, тогда как адсорбция может быть как положительной, так и отрицательной. Интерес представляют собой системы, в которых поверхностный избыток локализуется в пределах одного монсслоя адсорбирующегося вещества и, кроме того, выполняется условие VlNJv2N2 1. В таких системах относительный поверхностный избыток, приблизительно равный мало отличается от поверхностной концентрации компонента 1. Такие системы реализуются, например, при адсорбции большинства органических соединений из водных растворов, а также при адсорбции атомов водорода на границе электрод — раствор. Однако в общем случае для определения поверхностной концентрации компонента по гиббсовской адсорбции нужны дополнительные модельные представления о распределении концентрации в зависимости от расстояния до электрода. [c.20]

    Говоря об оптических методах изучения адсорбции на электродах органических веществ, следует упомянуть также метод фотоэлектронной эмиссии. В этом методе электрод освещают монохроматическим светом с длиной волны X, которая должна быть меньше некоторого порогового значения Ао (красная граница фотоэффекта). При < о электроны выбиваются из металла в раствор, теряют там часть своей энергии (термализуются), соль-ватируются молекулами растворителя и, наконец, захватываются специально добавленными в раствор акцепторами электронов (молекулы N2O, ионы Н3О+, NO3- и др.). Если толщина двойного электрического слоя d<, то между регистрируемым током фото-эмиссии /ф в степени 0,4 и потенциалом Е наблюдается линейная зависимость (закон пяти вторых 5/2= 1/0,4). Адсорбция органических молекул приводит, как правило, к раздвнженню обкладок двойного слоя, т. е. к увеличению d. Если при этом будет нарушено условие d< k, то произойдет искажение зависимости [c.35]

    С помощью изотерм двумерного давления можно охарактеризовать поверхностную активность органических соединений и на границе электрод/раствор. При этом величина Лст равна изменению обратимой поверхностной работы (для жидких металлов пограничного натяжения), которое вызывает адсорбция органического вещества при заданном электрическом состоянии исследуемой границы раздела, т. е, при фиксированном значении заряда электрода ( 7 = onst) или его потенциала ( = onst). [c.41]

    Влияние адсорбированных на границе электрод/раствор поверхностно-активных органических веществ (ПАОВ) на электрохимическую кинетику может быть весьма сложным и затрагивать различные стадии электродного процесса как собственно элементарный акт, так и стадию массопереноса. Чаще всего в литературе рассматривается влияние адсорбции ПАОВ на стадию переноса электрона. Гораздо меньше изучен и обсужден вопрос о действии ПАОВ на шроцессы массопереноса при протекании электродных реакций. Более того, нередко утверждается, что не существует связи между адсорбционными процессами и процессами подвода реагентов к поверхности электрода или отвода от нее продуктов реакции. В общем виде это неправильно, во многих случаях установлено существование такой взаимосвязи, причем действие ПАОВ на стадии массопереноса зависит от степени заполнения им поверхности электрода и структуры адсорбционного слоя. [c.124]

    В этом разделе рассматривается влияние адсорбированного на подвижной границе электрод/раствор ПАОВ на конвекцию этой границы в условиях, когда возникновение тангенциальных движений не связано с адсорбцией ПАОВ. Причиной таких тангенциальных движений поверхности жидкого электрода может быть неравномерность поляризации и неравномерность подачи восстанавливающегося вещества (тангенциальные движения первого рода). Кроме того, тангенциальные движения поверхности ртути могут быть связаны с самим процессом вытекания ртути из капилляра при больших скоростях течения струя ртути сначала движется вертикально до дна капли, а затем, растекаясь в стороны, образует симметричные завихрения (тангенциальные движения второго рода). [c.143]

    Уменьшение транспорта вещества из объема раствора к поверхности электрода наблюдается и при торможении движений первого рода адсорбированным ПАОВ. Однако механизм их действия, по-видимому, сложнее. Помимо эффекта торможения, вызванного переносом ПАОВ вдоль поверхности, должен иметь место эффект снижения скорости движений из-за выравнивания вследствие адсорбции величин поверхностного натяжения в разных точках капельного электрода, имеющих разные значения потенциала, что вызвано различием в величинах токов. Эти различия в плотности тока на разных участках капли вызываются как неодинаковой радиальной скоростью движения разных участков поверхности капельного электрода, так и экранировкой верхней части капли срезом капилляра. Неоднородность в распределении тока вдоль поверхности электрода является причиной падения потенциала вдоль границы электрод/раствор и, следовательно, в отсутствие адсорбции ПАОВ вызывает появление значительных градиентов поверхностного натяжения и, как следствие, движений поверхности жидкого электрода первого рода. [c.146]

    ВОЗНИКНОВЕНИЕ НА ПОДВИЖНОЙ ГРАНИЦЕ ЭЛЕКТРОД/РАСТВОР СПОНТАННЫХ ТАНГЕНЦИАЛЬНЫХ ДВИЖЕНИЙ ПРИ АДСОРБЦИИ ПАОВ (полярографические максимумы третьего рода) [c.149]


Смотреть страницы где упоминается термин Адсорбции граница на электроде: [c.2]    [c.19]    [c.2]    [c.19]    [c.152]   
Теоретическая электрохимия (1959) -- [ c.372 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.372 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция на границе

Электрод адсорбция



© 2025 chem21.info Реклама на сайте