Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузный слой зарядов в растворах

    Причиной электрофореза, как и других электрокинетических явлений, служит наличие двойного ионного слоя (ДИС) на поверхности раздела фаз. При положительно заряженной дисперсной фазе коллоидные частицы вместе с адсорбированными на них положительными потенциалопределяющими ионами движутся к катоду, отрицательно заряженные противоионы диффузного слоя —к аноду. В случае отрицательного заряда частиц движение происходит в обратных направлениях. Дисперсная фаза смещается относительно дисперсионной среды по поверхности скольжения. Поэтому, измерив скорость электрофореза, находят потенциал коллоидной частицы, т. е. электрокинетический или (дзета) потенциал. Величина -потенциала характеризует агрегативную устойчивость золя и зависит от толщины диффузного слоя, концентрации и заряда противоионов. Скорость электрофореза определяют методом подвижной границы — наблюдают за передвижением границы между окрашенным коллоидным раствором и бесцветной контактной жидкостью. Наилучшей контактной жидкостью является ультрафильтрат самого золя. Для приближенных измерений используют воду. Сущность метода состоит в определении времени, за которое граница окрашенного золя переместит- [c.205]


    При введении в коллоидный раствор электролитов происходит сжатие диффузного слоя и даже его разрушение, в результате чего силы отталкивания между частицами уменьшаются, частицы слипаются и выпадают в осадок — происходит коагуляция коллоидного раствора. Чем выше заряд противоиона во введенном электролите, тем при меньшей концентрации наблюдается эффект коагуляции (правило Шульце — Гарди). Гидрофильные коллоиды коагулируют только при значительных концентрациях электролита. Коагуляции коллоидов способствует также повышение температуры раствора. Таким образом, для разрушения коллоидного раствора и его коагуляции необходимо нагревание и введение электролита. [c.99]

    Многочисленные данные, указывающие на благоприятное влияние заряда частиц на коллоидную устойчивость, ясно показывают, что происхождение сил отталкивания надо искать во взаимодействии диффузных электрических слоев. Следует, однако, отметить, что первоначальные наивные взгляды на отталкивание, согласно которым оно порождается непосредственным кулоновским взаимодействием одноименно заряженных частиц, оказались неправильными. Коллоидная частица в золе действительно заряжена относительно водного раствора, но вместе с окружающим ее диффузным слоем противоионов она образует электрически нейтральный комплекс. Взаимодействие между такими комплексами может быть связано только с деформацией их ионных атмосфер, и количественно его следует интерпретировать именно с этой точки зрения. [c.210]

    Заряд же специфически адсорбированных катионов 1=0. При этом предположении весь избыток катионов Г+ располагается в диффузном слое. В растворе 1,1-валентного электролита это означает [c.126]

    Д. Грэм предположил, что в растворах солей щелочных и щелочноземельных металлов специфической адсорбируемостью обладают только анионы. Заряд же специфически адсорбированных катионов е = 0. При этом предположении весь избыток катионов Г . располагается в диффузном слое. В растворе 1,1-валентного электролита это означает [c.131]

    Если двойной слой образуется вследствие обратимой адсорбции из относительно большого объема раствора, то потенциал онределяется концентрацией потенциалопределяющих ионов, в то время как индифферентные ионы в основном влияют на толщину диффузного слоя. Метод вычисления для капель эмульсии рассмотрен ниже. Типичные значения лежат в области 25 н- 100 ме, а значения 6, которые могут быть рассмотрены как расстояния между поверхностью и центром заряда противоионов, колеблются от 1000 А (для дистиллированной воды) до 10 А [для 0,1 н. раствора (1 1) электролита]. Обычно считают, что если две коллоидные частицы, несущие подобные двойные слои, соприкасаются (например, в результате броуновского движения), поверхностный потенциал при их взаимодействии остается постоянным это означает, что адсорбционное равновесие устанавливается очень быстро. Альтернативно можно постулировать, что поверхностный заряд остается постоянным в результате медленной адсорбции. Видимо, истина находится между указанными двумя предположениями, которые, к счастью, не приводят к сильно отличающимся оценкам энергии взаимодействия. [c.97]


    Противоионы конечных размеров не могут подойти к поверхности ближе, чем расстояние й, определяемое размерами ионов внешней и внутренней обкладок. Они образуют плотный слой— плоский конденсатор, внешняя обкладка которого лежит в п л о -скости наибольшего приближения (х=с1), проходящей через центры тяжести заряда ближайших к поверхности противоионов. Толщина й близка к сумме радиусов гидратированных (или частично дегидратированных) ионов и имеет порядок десятых долей нм. Остальные ионы внешней обкладки образуют диффузный слой зарядов с убывающей вглубь раствора плотностью. Падение потенциала, линейное в плоском конденсаторе (плотном) слое, переходит в экспоненциальное (ХП.9) при х> й. [c.185]

    В соответствии с правилом адсорбции (см. разд. 11.1.3), на поверхности коллоидной частицы в процессе ее образования в первую очередь адсорбируются ионы, входящие в состав малорастворимого соединения. Например, при добавлении к раствору хлорида натрия избытка осадителя — нитрата серебра — образовавшиеся частицы хлорида серебра становятся положительно заряженными вследствие адсорбции на них ионов серебра (первичный адсорбционный слой). Под действием электростатических сил вокруг заряженных частиц образуется слой противоионов (в данном случае нитрат-ионов), часть которых прочно связана с первичным адсорбционным слоем, а часть находится в диффузном слое. Заряд коллоидной частицы определяется разностью зарядов первичного адсорбционного слоя и слоя противоионов, прочно связанного с ним. [c.142]

    Таким образом, формирование поверхностного заряда частиц полимеров в водных средах происходит по двум последовательно реализующимся диссоциационному и адсорбционному механизмам. Уменьшение начального -потенциала при возникновении на поверхности частиц дисперсной фазы адсорбционного слоя ПАВ можно связать как со сдвигом ионов, образующих диффузный слой в раствор, так и расположением их в двойном слое. [c.126]

    Было предпринято много попыток разработать теорию двойного электрического слоя, которая бы количественно согласовывалась с опытными данными. Так, Райс (1926—1928) высказал предположение, что и внутри металла пе все заряды локализованы в одной плоскости, а распределяются в его объеме с постепенно убывающей плотностью. Одпако представление о двух диффузных слоях по обе стороны границы раздела вряд ли приложимо к тому случаю, когда одна нз граничащих фаз. чвляется металлом. Возможно, что оио реализуется на границе ионопроводящих фаз, а также на границе полупроводника с раствором. [c.271]

    Толщина этого слоя в растворе зависит от концентрации раствора, от заряда металла и от температуры. Она может различаться в довольно широких пределах (от нескольких ангстрем до микрона). Слой этот в растворе обладает диффузным строением, т. е. избыточная концентрация катионов и недостаток анио- [c.416]

    Ниже, в главе об электрокинетических явлениях, мы увидим, что в водных растворах электролитов около межфазной поверхности образуется так называемый диффузный электрический слой. При низких концентрациях электролита расстояние, на которое могут удаляться свободные заряды двойного слоя (ионы) от поверхности в глубь раствора под влиянием теплового движения, может достигать 1 мкм, т. е. толщина диффузного слоя будет порядка десятков тысяч ангстрем. [c.93]

    Диффузный слой простирается далеко внутрь раствора, но в нем можно выделить эффективную часть на расстоянии Я от плоскости Гг. Длина является аналогом радиуса ионной атмосферы в растворе сильного электролита (см. стр. 185). Как и этот радиус, она обратно пропорциональна квадратному корню из концентрации. Если все заряды эффективного диффузного слоя собрать в тонкий слой на расстоянии h, то они нейтрализуют заряд поверхности электрода. [c.129]

    За внешней плоскостью Гельмгольца располагается диффузный слой с потенциалом, изменяющимся от г )г до нуля и с плотностью заряда, совпадающей с <72. Схематическое изображение строения двойного слоя по Грэму для незарял енной поверхности, заряженной отрицательно п положительно, дано на рис. 12.5. В соответствии с допущением Грэма о том, что следует считаться лишь с поверхностной активностью анионов (в системах, не содержащих органических растворенных веществ), в первой плоскости Гельмгольца находятся только специфически адсорбирующиеся анионы, причем их поверхностная концентрация растет при переходе от незаряженной поверхности (рис. 12.5, а) к заряженной положительно (рнс. 12.5, б). Грэм подчеркивает, чго это увеличение концентрации следует отнести прежде всего за счет упрочнения ковалентной связи, а не за счет сил кулоновского взаимодействия. При достаточно отрицательном заряде поверхности (рис. 12,5, в) во внутреннем слое Гельмгольца остается лишь растворитель, и заряд его, так же как н в растворе, не содержащем поверхностно-активных [c.271]

    Адсорбция ионов на поверхности осадка характеризуется уравнением типа (5.21), но имеет некоторые особенности по сравнению с адсорбцией молекул. Особенности связаны с избирательной адсорбцией ионов ионным кристаллом и с зарядом ионов. В соответствии с правилом Панета — Фаянса — Гана осадок адсорбирует из раствора те ионы, которые образуют наименее растворимое или наименее диссоциированное соединение с одним из ионов осадка. В первую очередь на поверхности осадка адсорбируются ионы, входящие в состав осадка и имеющиеся в растворе в избытке. Например, при осаждении сульфата хлоридом бария в начальный момент и до полного осаждения сульфата бария на осадке будут адсорбироваться 504 -ионы, так как в это время они находятся в избытке, а после полного осаждения BaS04, когда в раствор введен избыток хлорида бария, адсорбироваться будут ионы Ва +. Эти ионы образуют первичный слой, связанный с осадком довольно прочно. К ионам первичного слоя притягиваются ионы противоположного заряда (противоионы), которые удерживаются менее прочно и образуют так называемый вторичный или диффузный слой. В качестве противоионов вторичного слоя выступают ионы, образующие наименее растворимое или наименее диссоциированное соединение с ионами первичного слоя. При прочих равных условиях адсорбция иона увеличивается с увеличением его заряда. Число адсорбированных ионов возрастает также с увеличением поверхности осадка т. е. мелкокристаллические и аморфные осадки адсорбируют больше ионов, чем крупнокристаллические. С увеличением температуры адсорбция уменьшается. [c.96]


    Величина электрокинетического потенциала зависит от концентрации ионов электролитов в растворе и от их заряда. Чем больше концентрация электролита, тем меньше толщина диффузной части двойного электрического слоя и тем меньше -потенциал. Когда все ионы диффузного слоя перейдут в адсорбционный, = 0. [c.170]

    Диффузионный потенциал возникает на поверхности раздела двух растворов электролитов, различающихся либо по виду электролита, либо по концентрации. Причиной возникновения диффузионного потенциала является различие в подвижностях ионов электролита. Ионы, обладающие большей подвижностью, диффундируют в более разбавленный раствор с большей скоростью, поэтому поверхность соприкосновения двух растворов заряжается положительно со стороны более разбавленного раствора, если катион движется быстрее аниона. Образуется диффузный двойной электрический слой с соответствующим скачком потенциала. Эта разность потенциалов ускоряет медленно перемещающийся ион и замедляет более подвижный, пока не наступит состояние, при котором скорости ионов сравняются. Результирующий ток через границу станет теперь равным нулю. Таким образом, дальнейшее взаимное удаление зарядов прекращается. Стационарная разность потенциалов в пограничном слое между растворами называется диффузионным потенциалом. [c.181]

    Адсорбционная способность различных ионов неодинакова чем больше заряд иона и чем меньше его гидродинамический радиус, тем больше вероятность перехода из свободного раствора и диффузного слоя в адсорбционный слой и вытеснения им одноименно заряженного иона. [c.126]

    Согласно теории Гуи, приведенная толщина диффузного слоя 5 (т. е. расстояние от поверхности до центра тяжести электрических зарядов) обратно пропорциональна корню квадратному из величины концентрации. Для 10"2 н. раствора одновалентного электролита 5 = 3 М]),, для 10" н. 5 = 30 мц, т. е. во много раз больше толщины плотного слоя. [c.177]

    Электрокинетический ток будет отвечать переносу электрических зарядов в единицу времени вследствие относительного смещения подвижной части двойного слоя при движении частиц как целого со слоем жидкости в пристенном слое. Этот электрокинетический ток прямо пропорционален величине -потенциала и зависит от концентрации таким образом, что при возрастании концентрации электролита в растворе диффузный слой сжимается и -потенциал стремится к нулю, сводя к нулю и величину потенциала седиментации. [c.142]

    При относительном перемещении фаз ионы диффузной части двойного слоя участвуют в движении жидкой фазы, в, то время как ионы плотного слоя остаются вместе с твердой фазой. Поэтому участие ионов диффузного слоя в относительном движении жидкости характеризуется не всем межфазным потенциалом е, а лишь той частью его, которая представляет собой падение потенциала в области диффузного слоя. Эта часть падения потенциала, точнее разность потенциалов между границей скольжения жидкости и глубиной раствора, т. е. областью, где объемный заряд равен нулю, называется электрокинетическим или -потенциалом. [c.178]

    Таким образом, -потенциал характеризует объемный заряд жидкой фазы, а следовательно, и электрокинетические явления, обусловленные ионами диффузного слоя. Граница скольжения жидкости в разбавленных растворах обычно совпадает с границей между плотным и диффузным слоем. В концентрированных растворах, где потенциал быстро изменяется с расстоянием, эти границы могут не совпадать, поэтому в общем случае -потен-циал не всегда может быть отождествлен с падением потенциала в диффузном слое (обозначаемым обычно через фО. [c.178]

    Удельная поверхностная проводимость Кз по физическому смыслу не зависит от величины поверхности, а следовательно, и от радиуса капилляров, или иначе, от степени дисперсности системы. Изменение концентрации раствора, как показали экспериментальные данные, мало влияет на величину Кз. Поскольку с ростом концентрации ионы диффузного слоя переходят в плотный слой, отсутствие заметных изменений величины Кз свидетельствует о том, что ионы в плотном слое обладают подвижностью. Отсюда следует, что поверхности ная проводимость обусловлена всеми ионами внешней обкладки двойного слоя. Величина Кз связана с плотностью заряда и в первом приближении равна  [c.214]

    Как видно из приведенных данных, величина электрокинетического потенциала более резко изменяется при увеличении концентрации раствора. Многовалентный ион тория вызывает перемену знака на положительный. Если оставаться на положениях теории Гуи, тО такие результаты объяснить трудно. Фрейндлихом было указано, что полученные данные могут быть объяснены, если принять, что граница скольжения между фазами находится за пределами первого слоя противоионов, а эффективная часть заряда и падения потенциала, играющие роль в электрокинетических явлениях, связаны с наружной частью диффузного слоя ионов. Для более отчетливого представления о характере распределения зарядов на фазовой границе твердое тело—жидкость, согласно интерпретации Фрейндлиха и Смолуховского, рассмотрим схему на рис. 17, следуя А. Н. Фрумкину.  [c.36]

    Второе предположение Грэма заключалось в том, что при отсутствии специфической адсорбции емкость плотного слоя зависит только от заряда поверхности и не зависит от концентрации электролита l=f q). Это предположение в сочетании с формулой (24.6) позволяет рассчитать кривые дифференциальной емкости, двойного слоя в растворах любого состава, если известна кривая дифференциальной емкости в каком-либо одном растворе. Действительно, из выражения для заряда диффузного слоя [c.116]

    Способность ионитов к ионному обмену объясняется их строением. Любой ионит состоит из твердой основы (матрицы), на которую тем или иным способом нанесены специальные функциональные группы, способные при помещении ионита в раствор к образованию на поверхности ионита потенциалообразующих ионов, т. е. к возникновению заряда. Вследствие этого вокруг твердой фазы создается диффузионный слой из противоположно заряженных ионов (противоионов). Появление потенциалообразующих ионов может происходить либо адсорбцией функциональными группами ионита из раствора ионов какого-либо знака заряда (например, —КНз- Н+- МН+4), либо диссоциацией функциональных групп под действием молекул воды (например, —ЗОзН- 50з +Н+). В последнем случае противоионами, образующими диффузный слой, являются ионы, переходящие в раствор в процессе диссоциации. Ионы диффузного слоя обладают повышенным запасом кинетической энергии и могут выходить из диффузного слоя в раствор, но при этом из раствора в диффузный слой должны переходить ионы того же знака заряда. Таким образом, испит можио представить как твердый электролит, неподвижная часть которого представляет одну его часть, а подвижные противоионы — другую (рис. 3.1). [c.59]

    В золе AgJ в растворе KJ преимущественно адсорбируются ионы J (вообще легче адсорбируются ионы, общие с ионами решетки частиц или изоморфные с ними), вследствие чего частицы золя будут иметь отрицательный заряд, а компепсирующие ионы К расположатся в растворе частично н гельмгольцевском слое, частично в диффузном слое. В растворе AgNOg частицы золя AgJ преимущественно адсорбируют ионы Ag и ириобретают положительный заряд, а компенсирующие ионы N0 располагаются в растворе, подобно ионам <." на рис. 99. [c.228]

    Подставив вместо ф -потенциал, найдем, что при увеличении толидины диффузного слоя X (уменьшении и — величины обратной толщине слоя) -потенциал возрастает при постоянном расстоянии плоскости скольжения от границы раздела фаз. Так как понижение температуры, введение в систему индифферентного электролита (специфически не взаимодействующего с поверхностью) и увеличение заряда его ионов ведут к уменьшению толщины диффузного слоя, то соответственно снижается и электрокинетический потенциал. Отсюда же следует, что этот иотенциал будет снижаться и с уменьп1ением диэлектрической проницаемости среды, напрпмер, при добавлении в водный раствор спиртов, эфиров и других органических веществ. [c.218]

    Специфическая адсорбция может вызвать и уменьшение С-но-тенциала, если специфически адсорбируются противоионы, так как они имеют заряд, противоположный заряду поверхностп. Такая адсорбция может привести к перезарядке поверхностп, т. е. к такому положению, когда потенциал диффузного слоя и -потенциал будут иметь знаки, противоположные знаку межфазного потенциала. Знач тельное влияние на -потенциал оказывает pH среды, поскольку ионы Н+ н ОН обладают высокой адсорбционной способностью. Особо велика роль pH среды в тех случаях, когда а контакте с водным раствором находится амфотерное вещество. Прн изменении кислотности среды можно перезарядить фазы. [c.219]

    В ингибированных системах агрегирование глинистых частиц офани-чивается катионами, связывающими более прочно глинистые частицы, повышающими заряд ионной оболочки, что приводит к сжатию диффузного слоя и уменьшению количества связанной воды. В качестве ингибирующих добавок чаще используются соединения кальция (известь, гипс, ангидрит, хлористый кальций) и калия (гидроокись калия, хлористый калий). Поэтому буровые растворы соответственно называются известковыми, гипсовыми, высококальциевыми, калиевыми, калиево-полимерглинистыми. [c.52]

    Стремясь устранить недостатки теории Гельмгольца, Гуи и Чапмен предположили, что двойной электрический слой в растворе имеет диффузное строение, причем расположение ионов подчиняется статистической формуле Больцмана. Средняя плотность заряда в растворе, как и в теории Гельмгольца, принимается равной по величине и обратной по знаку удельному поверхностному заряду со стороны металла  [c.101]

    По теории Гуи — Чапмена можно определить не только общий заряд ионов в диффузном слое но и вклад анионов и катионов в этот общий заряд, т. е. величины и q . Ограничимся выводом выражений для и в растворе 1,1-валентного электролита. Величины [c.109]


Смотреть страницы где упоминается термин Диффузный слой зарядов в растворах: [c.79]    [c.274]    [c.58]    [c.59]    [c.62]    [c.219]    [c.98]    [c.78]    [c.218]    [c.28]    [c.39]    [c.41]    [c.146]    [c.117]   
Электрохимия металлов и адсорбция (1966) -- [ c.33 , c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузный слой



© 2025 chem21.info Реклама на сайте