Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородные ионы, концентрация нуклеиновых кислотах

    На устойчивость двойной спирали в растворе влияют многочисленные факторы. Образование упорядоченных структур является экзотермическим процессом, и поэтому спирали стремятся расплавиться при повышении температуры растворов ДНК. Из числа сил, стабилизующих нативную форму, водородные связи и диполь-дипольные взаимодействия между пуриновыми и пиримидиновыми остатками, упакованными в двойную спираль [344], должны приводить к выделению тепла. В то же время следует ожидать, что гидрофобное взаимодействие будет эндотермическим. Значение гидрофобного взаимодействия иллюстрируется тенденцией водных растворов ДНК к денатурации при добавлении органических растворителей с большими неполярными остатками [345]. Как и следовало ожидать, высокая плотность заряда, обусловленная ионизованными фосфатными остатками, расположенными вдоль цепи ДНК, обусловливает неустойчивость спиральной конформации. В результате этого добавление умеренных количеств электролитов должно стабилизовать нативную форму ДНК, что и было обнаружено при добавлении таких солей, как галогениды щелочных или щелочноземельных металлов [346, 347]. Если определить температуру плавления (Г ) как температуру, при которой изменения в спектре, характеризующие денатурацию, происходят на 50%, то Т- , по-видимому, будет иметь примерно линейную зависимость от логарифма концентрации катионов щелочных металлов. В типичном случае повышается от 36 до 82° при увеличении концентрации ионов натрия с 0,0003 до 0,1 н. Увеличение концентрации соли приводит также к сужению интервала температур, в котором происходит переход спираль — клубок. В отношении стабилизации спиральной конформации особенно эффективны некоторые двухвалентные иопы, образующие специфические комплексы с фосфатными группами основной цепи ДНК (например, Mg +). Нуклеиновая кислота как бы образует стехиометрические комплексы с этими катионами, причем Тт таких комплексов высока даже при очень слабой ионной силе. При всех условиях переход спираль — клубок происходит в удивительно узком температурном интервале, причем 90% изменений, как правило, происходит в интервале менее 10°. [c.127]


    До сих пор мы говорили лишь о тепловой денатурации ДНК, обусловленной энтропийной выгодностью денатурированного клубкообразного состояния. Энергия молекул ДНК и других нуклеиновых кислот меньще в спиральном состоянии, которое поэтому является устойчивым при достаточно низких температурах. В энергетический баланс молекул нуклеиновых кислот вносят существенный вклад не только внутри- и межмолекулярные водородные связи и взаимодействие гидрофобных групп, но и электростатическое взаимодействие заряженных групп цепи. Поэтому температура денатурации нуклеиновых кислот зависит от степени ионизации макромолекул, определяемой концентрацией водородных ионов, а также от ионной силы раствора, т. е. от концентраций других низкомолекулярных ионов. [c.371]

    Как уже указывалось, во всех случаях, когда молекулы содержат ионизуемые группы, концентрация водородных ионов в растворе оказывает существенное влияние на конформационные переходы. Это обусловлено тем, что электростатическая свободная энергия, включая энергию ионизации, неодинакова для различных конформационных структур макромолекул. Так, например, ионизуемые группы белков и нуклеиновых кислот могут участвовать в образовании внутримолекулярных водородных связей. В белках существенную роль играют тирозил-карбоксилатные и тирозил-гистидиновые связи. Поэтому ионизация групп в нативных молекулах оказывается невозможной. В то же время в молекуле, в которой в результате конформационного перехода внутримолекулярные водородные связи оказываются разорванными, степень ионизации групп определяется значением pH, и такая молекула обладает отрицательной электростатической свободной энергией. Ионизуемые группы в глобулярных белках могут быть экранированы также гидрофобными взаимодействиями с близко расположенными к ним областями белковой молекулы [c.20]

    За исключением влияния молекулярного веса иа вязкость, седиментацию и связанные с ними физические свойства [347—349[, транспортные рибонуклеиновые кислоты по своему поведению сходны с микросомальиыми нуклеиновыми кислотами (рис. 8-34), хотя их нуклеотидный состав совершенно различен. Изменения коэффициента экстинкции и оптического врашения с изменением температуры вновь указывают на суш,ествование структуры, связанной водородными связями [344, 349, 352], и это подтверждается низкой скоростью реакции с формальдегидом [349[. То, что их структура несколько более стабильна и более упорядочена, чем у микросомальных РНК, видно из того факта, что они имеют более высокую температуру плавления и характеризуются более резким подъемом температурной кривой (т. пл. примерно 60 в 0,1 М растворе хлористого натрия, причем возрастание оптической плотности начинается с 40 ). Повышение или понижение ионной силы увеличивает или уменьшает температуру плавления, а мочевина в высокой концентрации заметно влияет на оптическое поглощение даже при комнатной температуре, что обусловлено понижением температуры плавления [349[. Увеличение оптического поглощения в бессолевом растворе фактически достигает того же значения, что и при максимальной температуре (24%). Эти изменения вновь полностью обратимы, и действительно, при нагревании до 70° при pH 6,8 ((X = 0,2) РНК не теряет своей биологической активности [344]. Хотя остаточным гипохромизмом зачастую можно пренебречь, особенно в случае ДНК, можно заметить, что в случае растворимой РНК из печени крысы [351 [ структурный (после нагревания или прибавления 6 М мочевины) гиперхромизм составляет приблизительно 21%, а гиперхромизм при щелочном гидролизе равен 49%. Это показывает, что и в отсутствие вторичной структуры с ее водородными связями значительная часть оснований остается в таком состоянии, что их плоскости параллельны. (Ср. с соответствующими данными для рибосомальной РНК из Е. oli.) [c.622]



Смотреть страницы где упоминается термин Водородные ионы, концентрация нуклеиновых кислотах: [c.600]    [c.170]   
Стратегия биохимической адаптации (1977) -- [ c.222 , c.225 , c.325 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные ионы

Водородные ионы, концентрация в кислотах

Водородные ионы. Концентрация

Ионная концентрация

Кислота ионная

Кислота концентрация

Концентрация водородных ионов

Концентрация ионов

Нуклеиновые кислоты



© 2025 chem21.info Реклама на сайте