Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

РНК рибонуклеиновые кислоты транспортные

    К кодону и-РНК присоединяются не свободные аминокислоты, а их переносчики — антикодон транспортной рибонуклеиновой кислоты (т-РНК). В молекуле т-РНК есть два активных участка — антикодон, который соединяется с кодоном и-РНК, н участок с триплетом ЦЦА, связывающимся с активирующим аминокислоты ферментом аминоацил-т-РНК-синтетазой. Эти ферменты специфичны по отнощению к соответствующим аминокислотам. В активации аминокислот принимает также участие АТФ. Соединение антикодона т-РНК с кодоном и-РНК происходит только после образования комплекса аминокислота — фермент— т-РНК- Следовательно, из фонда клеточных аминокислот т-РНК выбирает соответствующую своему антикодону аминокислоту и занимает свое место на кодоне и-РНК. [c.45]


Рис. 91. Отпечаток на рентгеновской пленке геля после электрофореза смеси радиоактивных фрагментов РНК (транспортной рибонуклеиновой кислоты) длиной от 40 до 72 остатков Рис. 91. Отпечаток на <a href="/info/140144">рентгеновской пленке</a> <a href="/info/1382279">геля после электрофореза</a> смеси радиоактивных фрагментов РНК (транспортной рибонуклеиновой кислоты) длиной от 40 до 72 остатков
    Существуют два различных типа нуклеиновых кислот —дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК представляет собой генетический материал большинства организмов. В прокариотических клетках, кроме основной хромосомной ДНК, часто встречаются вне хромосомные ДНК — плазмиды. В эукариотических клетках основная масса ДНК расположена в клеточном ядре, где она связана с белками в хромосомах. Эукариотические клетки содержат ДНК также в различных органел-лах (митохондриях, хлоропластах). Что же касается РНК, то а клетках имеются матричные РНК (мРНК), рибосомные РНК (рРНК), транспортные РНК (тРНК) и ряд других кроме того, РНК входят в состав многих вирусов. [c.296]

    Так, пируваткарбоксилаза катализирует синтез щавелевоуксусной кислоты М3 пировиноградной кислоты и СО2. К лигазам относятся также ферменты, катализирующие присоединение остатков аминокислот к т-РНК (транспортные рибонуклеиновые кислоты) в процессе биосинтеза белков и др. [c.28]

    Много внимания вопросам ориентации на опыт живой природы уделяет Н. Н. Семенов. Здесь есть смысл привести хотя бы часть характеристики, которую дает он химическому производству живой природы Природа при зарождении и эволюции новых организмов создала молекулярные машины совершенно исключительной точности, быстроты действия и необычайного совершенства. Вспомним, например, вскрытый недавно химиками и биологами синтез больших белковых молекул со строгим чередованием аминокислот. В клетках имеются субмикроскопические сборные заводики — рибосомы, включающие в себя рибонуклеиновые кислоты как сборочные машины . Каждый сорт коротких молекул транспортных рибонуклеиновых кислот захватывает один определенный вид аминокислот, несет их в рибосому и ставит каждую аминокислоту на свое место согласно информации, содержащейся в молекулах рибонуклеиновых кислот. Тут же к аминокислотам подходят ката-.тизаторы-ферменты и осуществляют сшивку аминокислот в одну молекулу белка со строгим чередованием. Это настоящий квалифицированный завод, строящий молекулы по плану, выработанному природой в процессе эволюции [15, с. 192—193]. [c.173]


    Интенсивные исследования, проведенные в последние годы, позволяют сделать некоторые выводы о вторичной структуре рибонуклеиновых кислот. Так, в транспортных РНК примерно 70% нуклеотидов образуют жесткие двуспиральные участки. Информационные РНК, по-видимому, не имеют спирализованных областей. [c.737]

    Транспортная рибонуклеиновая кислота  [c.317]

    Транспортная рибонуклеиновая кислота. [c.317]

    Научные работы относятся к биохимии и молекулярной биологии. Внес существенный вклад в изучение роли транспортных рибонуклеиновых кислот. Впервые получил [c.48]

    Специфичная транспортная рибонуклеиновая кислота [c.348]

    II (тРНК У) Рибонуклеиновая кислота транспортная, фенилаланин спец. [c.410]

    Рибонуклеиновая кислота (РНК). Полинуклеотиды, контролирующие сннтез белков. В зависимости от выполняемой ими функции рибонуклеиновые кислоты относят к трем классам или типам 1) матричные, или информационные, РПК (мРИК), 2) рибосоы-ные РНК (рРИК) и 3) транспортные РНК (тРНК). Сахарным компонентом нуклеотидов во всех РНК служит рибоза. [c.494]

    В 1968 г. Р. Холли был удостоен Нобелевской премии за установление структуры аланиновой тРНК дрожжей. Поскольку молекулы тРНК отличаются сравнительно небольшими размерами, многие лаборатории заняты выяснением полной структуры различных транспортных рибонуклеиновых кислот. [c.494]

    Не существует непосредственной структурной связи между отдельными аминокислотами и осно ваниями нуклеиновых кислот. Более того, существует 20 видов ам инокислот и только 4 типа оснований нуклеозидов. Сопоставление этих данных стимулировало ранние гипотезы о том, что должны существовать типы молекул-адапторов для того, чтобы осуществлять корреляцию между информацией, содержащейся в основаниях нуклеиновых кислот, взятых одновременно по три, и структурами индивидуальных аминокислот. Такие адапторы были вскоре обнаружены в вйде маленьких относительно хорошо растворимых молекул РНК, получивших позднее название транспортных рибонуклеиновых кислот, тРНК. [c.206]

    Методом рентгеноструктурного анализа монокристаллов установлена детальная пространственная структура сотен белков, значительного числа олигонуклеотидов, нескольких транспортных рибонуклеиновых кислот. Однако встает вопрос, в какой мере установленная структура соответствует той, которая имеет место в функционально активном состоянии биополимера в растворе или в составе живого организма. Априорно нельзя ни исключить, ни оценить масштаб искажения структуры в результате формирования кристаллической решетки. Поэтому весьма существенно располагать независимой инс1юрмацией о геометрии молекулы биополимера, пусть не столь полной, по зато соотиетствующей ее состоянию в растворе. Из экспериментальных методов наиболее П1ючные позиции завоевывают подходы, основанные на использовании ядерною матитпого резонанса, в первую очередь ядерного эффекта Оверхаузера. [c.313]

    РНК, рибонуклеиновая кислота. Биологический полимер, очень близкий к ДНК по своему химическому строению. Способен образовывать двойную спираль, но в природе, как правило, существует в виде одиночной нити. У некоторых вирусов является носителем генетической информации, т. е. подменяет ДНК. В клетке генетической ролн не играет. Играет важную роль при передаче информации от ДНК к белку. По выполняемым функциям различают три типа РНК информационная или матричная (мРНК), рибосомальная (рРНК) и транспортная (тРНК). [c.158]

    Многочасовым центрифугированием при 100000 g можно разделить разбавленную водной средой цитоплазму на растворимую фракцию, содержащую главным образом растворимые ферменты и растворимую рибонуклеиновую кислоту (РНК), и фракцию частиц, в которую наряду с мембранами в первую очередь входят рибосомы. Растворимые ферменты катализируют множество различных реакций распада и синтеза. Растворимые рибонуклеиновые кислоты [матричные (мРНК) и транспортные (тРНК)] и рибосомы участвуют в синтезе белка. [c.22]

    Важными компонентами цитоплазмы являются рибосомы, ферменты, рибонуклеиновые кислоты (РНК). Рибосомы представляют собой мембранные структуры 16 X 18 нм, состоящие на 40% из белка и на 60% из РНК. Они являются центрами синтеза белка. Одним из доказательств этого служит концентрация антибиотика хлорамфеннкола на рибосомах. Механизм действия хлорамфеннкола на бактерии состоит в подавлении синтеза белка в бактериальных клетках, чувствительных к этому антибиотику. Бактериальная клетка содержит около 10 000 рибосомальных частиц. Матричная и транспортная РНК участвуют в синтезе белков. Ферменты катализируют реакции синтеза и распада. При обработке лизоцимом бактериальных клеток протопласт приобретает сферическую форму и сохраняет жизнеспособность. В протопластах происходят важнейшие биохимические процессы биосинтез белка и нуклеиновых кислот, [c.26]

    Вкратце охарактеризованная в предыдущем разделе наследственная тактическая сополимеризация представляет собой один из наиболее изящных примеров того, как природа использует одномерность макромолекул полимеров. Как отмечалось в разделе 11.13, рибонуклеиновая кислота является носителем кода наследственной тактической сополимеризации. Закодированную информацию нужно каким-то образом передавать, поэтому тот вид рибонуклеиновой кислоты, который осуществляет функцию передачи информации непосредственно реакционной системе, в которой протекает сополимеризация, называется транспортной рибонуклеиновой кислотой [тРНК]. Молекулярная цепочка этого биологического полимера состоит из рибозы и фосфорной кислоты, с которыми соединены четыре обязательных типа оснований урацил (U), цитозин (С), аденин (А) и гуанин (G). Природа этих оснований и служит источником информации при наследственной тактической сополимеризации. В отличив от описанной выше записи с помощью, например, перфолент, при которой информация задается последовательностью. двузначных логических переменных, в данном случае запись информации реализуется с помощью четырехзначных переменных (т. е. таких переменных, которые могут иметь только четыре значения), а именно U, С, А и G. [c.142]


    Основные научные работы — в области биохимии нуклеиновых кислот. До 1964 занимался синтезом физиологически активных гетероциклических соединений пиримидинового ряда. Разработал твердофазный метод химического фракционирования транспортных рибонуклеиновых кислот на полиакрил-гидразидных сорбентах. Создал комплекс методов ультрамикро-биохимического анализа, позволяющий проводить исследование нуклеиновых кислот, белков и ферментов в масштабе отдельной клетки. Занимался изучением транспорта нуклеиновых кислот на модели гигантской одноклеточной водоросли — ацетобулярии и показал, что транспорт кислот не коррелирует с полярным ростом клетки (1973—1974), Осуществил сборку жизнеспособной клетки из отдельных компонентов — цитоплазмы, ядра и клеточной стенки, С 1974 занимается синтезом химических эквивалентов структурных генов белков и их встройкой а [c.613]

    Рибонуклеиновых кислот известно несколько типов 1) информационные или матричные РНК (и-РНК) 2) транспортные РНК (т-РНК) 3) рибосома л ьные РНК (р-РНК). [c.412]

    На этом рисунке АА обозначает аминокислоту АТФ—адено-зинтрифосфат АМФ — аденозинмонофосфат АА -- АМФ — аденилат аминокислоты тРНК — транспортную рибонуклеиновую кислоту мРНК, — информационную, или матричную, рибонуклеиновую кислоту, о, б и т. д. обозначают места связывания на рибосоме (тРНК). где происходит образование пептидной связи. [c.63]


Библиография для РНК рибонуклеиновые кислоты транспортные: [c.48]   
Смотреть страницы где упоминается термин РНК рибонуклеиновые кислоты транспортные: [c.702]    [c.19]    [c.105]    [c.410]    [c.153]    [c.120]    [c.473]    [c.297]    [c.620]    [c.701]    [c.53]    [c.55]    [c.198]    [c.286]    [c.96]    [c.276]    [c.279]    [c.34]    [c.247]    [c.255]    [c.697]    [c.196]    [c.221]    [c.854]   
Биоорганическая химия (1987) -- [ c.7 , c.16 , c.148 , c.246 , c.297 , c.303 , c.304 , c.308 , c.343 , c.404 , c.419 , c.426 , c.718 , c.735 ]




ПОИСК





Смотрите так же термины и статьи:

Рибонуклеиновые кислоты

Транспортная РНК



© 2025 chem21.info Реклама на сайте