Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольтамперометрия дифференциальная импульсная анодная

    РИС. 9.9. а — Кривая потенциал—время на ВРКЭ для 0,5 М раствора Na l, содержащего 1,5-10 М Zn , d", РЬ , Си" и 5-10"" М Hg". Время предварительного электролиза 5 мин при Е=—1,25 В Е—/-кривая регистрировалась после периода успокоения 30 с. б — Постояннотоковая анодная инверсионная кривая раствора о. Скорость развертки напряжения 50 мВ-с . в — Дифференциальная импульсная анодная инверсионная кривая раствора а. Скорость развертки напряжения 5 мВ-с , амплитуда импульса 50 мВ. г — Градуировочные кривые, полученные при определении свинца (П) методами потенциометрического инверсионного анализа (1), дифференциальной импульсной инверсионной вольтамперометрии (2) и постояннотоковой инверсионной вольтамперометрии (5) (электрод сравнения нас.КЭ) [60]. [c.534]


    Классическая полярография, вольтамперометрия с капельным ртутным электродом быстро вытесняется более соверщенными методами, обеспечивающими повышение разрешения и чувствительности. Один из наиболее чувствительных методов анализа малых концентраций металлов — это дифференциальная импульсная анодная вольтамперометрия с принудительным отрывом капли (ДИАВПО) —удачное сочетание анодной вольтамперометрии с принудительным отрывом капли (АВПО) и дифференциальной импульсной вольтамперометрии [50—52]. Выпускаемое полярографическое оборудование несложно и с ним легко работать [53, 54]. Как и в обычной полярографии можно одновременно определять несколько металлов, например С(1, Си, РЬ, 2п [55, 56]. В работе [55] сопоставляли полярографические методы и метод АСС. В работе [57] рассматриваются предельные концентрации мышьяка, определяемые методами ДИАВПО и АВПО, влияние концентрации кислоты и возможные помехи в анализе. Полярографические методы применялись для определения металлов в сточных водах [58]. [c.550]

    Значительная часть теории инверсионной вольтамперометрии описана в предыдущих главах. Например, для ртутного электрода и анодной инверсионной вольтамперометрии параметром, который необходимо вычислить для стадии потенциостатического электролиза, очевидно, является концентрация амальгамы. Если раствор перемешивается или вращается электрод , то это нужно принимать во внимание. Чтобы быть уверенным в равномерном распределении амальгамы в электроде, часто предусматривают период выравнивания или успокоения (прекращают вращение электрода или перемешивание раствора) между процессами осаждения и растворения. Эту стадию также следует учитывать, хотя вклад ее в процесс электролиза в целом относительно мал. Таким образом, теория потенциостатического электролиза с учетом этих особенностей эксперимента позволяет вычислить концентрацию металла в амальгаме. Теория фарадеевской составляющей тока на стадии растворения или окисления основывается на тех же принципах, которые были описаны в предыдущих главах, причем в соответствующих уравнениях используется концентрация амальгамы, вычисленная по данным стадии электролиза. Слагаемые тока заряжения, по существу, такие же, как и в неинверсионных вольтамперометрических методах так, если процесс растворения выполняют -с применением дифференциальной импульсной или фазочувствительной пере-"меннотоковой вольтамперометрии, а не постояннотоковой вольтамперометрии с линейной разверткой напряжения, то получают более высокую чувствительность из-за уменьшения тока заряжения. Конечно, чувствительность анодной (амальгамной) инверсионной вольтамперометрии также зависит от концентрации металла в амальгаме, а значит, и от геометрии электрода, продолжительности и эффективности стадии потенциостатического электролиза. [c.528]


    Изучение современной литературы фактически по всем полярографическим методам показывает, что использование лабораторной ЭВМ в полярографическом анализе становится обычным. Достижения в электрохимическом приборостроении в настоящее время близко отвечают уровню развития элементов электроники. Многие функции приборов, которые прежде осуществлялись в аналоговом виде, теперь все чаще обеспечиваются цифровыми устройствами. Очевидно, самым значительным достижением является разработка микропроцессоров на интегральных схемах, которые встраиваются в аппаратуру, выпускаемую промышленностью. В сочетании с недорогими интегральными схемами памяти и цифроаналоговыми (ЦАП) и аналогоцифровыми (АЦП) преобразователями микропроцессор позволяет создавать недорогие приборы, которые обеспечивают замкнутый цикл контроля, накопления и обработки информации. Это означает, что все операции эксперимента (например, установка скорости развертки напряжения, периода капания, высоты импульса, лриращения потенциала, измерение тока или высоты пика и вычисление концентрации) выполняются под управлением ЭВМ и без вмешательства оператора. Например, в полярографии используют прибор, в котором микропроцессор управляет аналоговым потенциостатом для осуществления дифференциальной импульсной полярографии, анодной инверсионной вольтамперометрии и ряда других методов. Такие процедуры, как отбрасывание данных, полученных от плохих капель, усреднение результатов повторных измерений, вычисление высоты, пика и его положения, вычитание фона и изменение масштабов г— -кривой также выполняются под управлением микропроцессора. Некоторые особенности этих приемов показаны на рис. 10.1—10.3. [c.545]

    Разработан высокочувствительный, надежный и точный метод определения ртути в морских и других водах с ПО 1 нг/л, основанный на современных принципиальных достижениях вольтамперометрии [578]. Метод включает следующие стадии катодное накопление ртути при программируемой поляризации с короткими анодными импульсами для удаления со-осаждающейся меди и определение ртути с использованием разностной дифференциальной импульсной ИВА с двойным золотым дисковым электродом. Метод обладает явными преимуществами по сравнению с атомно-абсорбционными методиками требуется небольшой объем пробы (50 мл), исключается восстановление ртути до атомарного состояния, не требуется сложной аппаратуры. Для определения ртути использовали также полудифференциальный режим регистрации тока в сочетании с использованием золотого электрода [359]. [c.121]


Аналитическая химия синтетических красителей (1979) -- [ c.550 ]




ПОИСК





Смотрите так же термины и статьи:

Вольтамперометрия

Вольтамперометрия дифференциальная

Вольтамперометрия дифференциальная импульсная

Дифференциальная импульсная

Импульсная вольтамперометрия

Ток анодный



© 2025 chem21.info Реклама на сайте