Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольтамперометрия инверсионные методы анализа

    Метод инверсионной вольтамперометрии нашел широкое применение при анализе весьма разбавленных растворов (10 моль/л и ниже). Это самый чувствительный из электро-химических методов, Сре 1 аналитических методов, основанных [c.291]

    Инверсионную вольтамперометрию можно использовать также, зля определения неорганических токсикантов в крови. Однако следует учитывать, что белковые компоненты крови являются поверхностно-активными веществами, адсорбция которых на электроде может сделать невозможным проведение анализа. Для преодоления данного препятствия применяют специальные электроды импрегнированный фафитовый и в виде тонкой пленки графита [72] Указанные электроды, особенно пленочный графитовый, позволяют определять свинец и кадмий в крови даже без специальной подготовки пробы В случае других природных матриц для определения общего содержания токсичных металлов желательно применение комбинированных методов, основанных на сочетании вольтамперометрии с методами выделения и концентрирования определяемых компонентов Этим вопросам в литературе уделяется заметное внимание 110,73,74]. Особый интерес вызьшает применение легкоплавких экстрагентов с последующим растворением экстракта в подходящем органическом растворителе [74]. Так, расплавленный нафталин эффективно извлекает из водных растворов тяжелые металлы в виде комплексов с гфо-изводными 8-меркаптохинолина При этом нижняя фаница определяемых концентраций для свинца и кадмия составляет Ю" мг/л [c.285]


    Методы определения веществ. При анализе следовых количеств веществ охотно прибегают к физическим методам анализа, которые характеризуются большой чувствительностью (табл. 8.10). Для обнаружения следовых количеств тяжелых металлов перспективным общим методом является спектрографический анализ (разд. 5.2) или специальные варианты масс-спектроскопии [19]. Остальные методы позволяют определить содержание только одного элемента (или отдельных элементов). Выбор метода следует проводить в зависимости от решаемой задачи. Метод инверсионной вольтамперометрии (разд. 4) сочетает метод определения с методом концентрирования, что дает особо высокую чувствительность определения. [c.401]

    Таким образом, инверсионная вольтамперометрия - это метод электрохимического анализа, в котором для снижения нижней границы определяемых концентраций используется предварительное концентрирование анализируемого компонента на рабочем электроде с помощью различных электрохимических или химических реакций, в том числе и за счет адсорбции, с последующей регистрацией вольтамперограммы концентрата. [c.413]

    Метод кулонометрии при определении загрязняющих веществ в воде и почве применяют редко — проще использовать для этой цели метод инверсионной вольтамперометрии (см. раздел 5) или применить другие методы анализа (см. главы I—III). [c.366]

    Анализ следов инверсионной вольтамперометрией. II. Метод замены среды. [c.77]

    Некоторые направления в современной пленочной полярографии, (инверсионной вольтамперометрии твердых фаз) (обзор). Брайнина X. 3. В сб.. Электрохимические методы анализа материалов . Изд-во Металлургия , 1972, с. 83—95. [c.204]

    Применение углеграфитовых электродов в инверсионной вольтамперометрии (обзор). Анциферов А. А., / С и н я к о в а С. И. в сб. Электрохимические методы анализа материалов . Изд-во Металлургия , 1972, с. 115—129. [c.205]

    В связи с этим появилась необходимость нового переработанного издания книги, в котором автор стремился отразить и обобщить наиболее важные тенденции и достижения во всех полярографических методах анализа и в полярографическом приборостроении. В частности, в настоящем издании подверглись значительной переработке и существенно дополнены гл. 1—4. В книгу включена новая глава Инверсионная вольтамперометрия , в которой изложены основные положения теории и особенности практического использования одного из перспективных направлений в полярографии, объединяющего методы анализа с предварительным накоплением вещества на электроде. [c.3]


    Основная область применения инверсионной вольтамперометрии — анализ следовых количеств веществ. Чувствительность метода 10 — Ю - моль-л . Применение метода ограничивается в основном недостатками техники измерения и необходимостью применения особо чистых реактивов. Очистка веществ часто является длительным и трудоемким процессом. [c.135]

    К концу XX века стало ясно, что электрохимический анализ, как и сама аналитическая химия, вышел за пределы своего классического содержания и превратился в междисциплинарную область знаний. Еще недавно при традиционном сопоставлении инверсионной вольтамперометрии с атомно-абсорбционной спектроскопией отмечали преимущества того или другого метода на примерах определения металлов в различных матрицах. Да и вообще вся методология электрохимического анализа по большей части развивалась на основе изучения объектов неорганической природы. Сейчас же методы аналитической химии устойчиво дрейфуют в сторону [c.9]

    Для определения ЗЬ в тантале применен химико-спектральный метод, включающий выделение ее соосаждением с СиЗ и прокаливание осадка при 500° С [643]. Спектральный анализ тантала по методу испарения позволяет определять ЗЬ (в также В1, С(1, РЬ и Зп) с пределом обнаружения 1 10 % ( 5 = 0,08- 0,11) [237]. В танталатах щелочных и щелочноземельных металлов ЗЬ 1-10 % (3 = 0,10 -н 0,15) определяют без отделения методом инверсионной вольтамперометрии на фоне 0,2М НС1 -Ь 0,1М винной кислоты [223]. [c.151]

    Инверсионная вольтамперометрия — электроаналитический метод, в котором чрезвычайно благоприятное отношение фарадеевского тока к току заряжения получают почти исключительно за счет существенного увеличения фарадеевской составляющей тока, в то время как ток заряжения остается на уровне, характерном для вольтамперометрических или полярографических методов, рассмотренных в предыдущих главах. Чрезвычайно большие фарадеевские токи на единицу концентрации, обеспечиваемые этим методом, приводят к крайне низким пределам обнаружения, и в 1950-х и 1960-х годах некоторые авторы [1— 3] полагали даже, что он является самым чувствительным из всех известных методов. О чувствительности метода можно судить по работе Эйснера и Марка [4], которые показали, что инверсионная вольтамперометрия при определении серебра в концентрации 10 ° М в пробах дождевой воды и снега, полученных при рассеивании иодида серебра в облаках, более чувствительна, чем. нейтронный активационный анализ. [c.521]

    Электрохимические характеристики процесса разряда-ионизации элементов и условия анализа некоторых материалов методом инверсионной вольтамперометрии (реактивы и вещества высокой степени чистоты, материалы металлургического производства, природные и сточные воды, жидкие и твердые продукты питания) [c.778]

    Условия анализа природных и сточных вод методом инверсионной вольтамперометрии без предварительного химического концентрирования примесей [14] [c.790]

    Условия анализа природных материалов методом инверсионной вольтамперометрии [14] [c.792]

    Электрохимическое концентрирование комбинируют с различными методами определения. В большинстве работ описано сочетание предварительного электрохимического концентрирования с последующими электрохимическими превращениями концентрата (инверсионные методы электроанализа), выделенного на ртутных или твердых микрозлектродах [15—18]. Электрохимическое концентрирование сочетают с такими методами, как фотометрический, кинетический, рентгенофлуоресцентный или нейтронно-активационный. Наиболее распространены сочетания с вольтамперометрией и родственными ей методами, а также с эмиссионным и атомно-абсорбционным методами анализа. Такие комбинации позволяют использовать твердые электроды с выделенным концентратом непосредственно в стадии определения без дополнительных операций. [c.46]

    Условия анализа полупроводниковых материалов методом инверсионной вольтамперометрии [15,16] [c.795]

    В 1968 г. в СССР был синтезирован новый материал — углеситалл, близкий по свойствам к стеклоуглероду. Нами было высказано предположение, что углеситалл может быть применен в качестве электрода в электрохимических методах анализа [9]. На примере определения РЬ(П) методом инверсионной вольтамперометрии [13] и хронопотенциометрии [14] было показано, что углеситалл — хороший материал для электрода в аналитической химии, не уступающий по простоте работы стеклоуглероду [13, 14]. В работах [9, 12—14] показана возможность использования стеклоуглерода и углеситалла в катодной области потенциалов. [c.244]

    Метод инверсионной вольтамперометрии пригоден для определения, вплоть до 10 -10" М, многих неорганических и органических веществ. Для улучшения соотношения 1р 1с в этом методе используют предварительное концентрирование определяемого вещества на поверхности индикаторного электрода. Электролиз проводят при потенциале предельного тока восстановления или окисления вещества при энергичном перемешивании раствора. Для полного выделения вещества из раствора понадобилось бы бесконечно большое время, что непригодно дпя анализа, поэтому электролиз ведут в течение строго контролируемого времени (< 5 мин). При этом выделяется пропорциональная часть анализируемого вещества, хорошо воспроизводящаяся при соблюдении [c.181]


    Полярографический метод относится к группе методов, объединяемых общим названием вольтамперо-метрия. Вольтамперометрии — это совокупность методов анализа, основанных на исследовании вольтам-перных кривых. Вольтамперометрии включает классическую полярографию, инверсионную вольтам-перометрию, вольтамперометрию с быстрой разверткой потенциала, переменнотоковую и импульсную полярографии, вольтамперометрическое титрование и некоторые другие методы. Во всех этих методах исследуют зависимость вольтамперометрических характеристик от электрохимического процесса окисления или восстановления веществ, находящихся в растворе. Электрохимический процесс происходит на погруженном в раствор электроде иод влиянием 1гроте-кающего через него электрического тока. [c.481]

    Для детектирования в ПА используют самые разнообразные оптические (спектрофотометрия, флуоресценция, пламенная атомноабсорбционная спектрометрия, атомно-эмиссионная спектрометрия с индуктивно связанной плазмой) и электрохимические (амперометрия, иономстрия и инверсионная вольтамперометрия) методы анализа. ПА не накладывает каких-либо принципиальных ограничений на выбор метода детектирования. К идеальному детектору в ПА предъявляются следующие требования быстродействие (время отклика не более 5 с) низкий шум и высокая чувствительность воспроизводимость и стабильность отклика  [c.417]

    В инверсионной X. эл ектролиз осуществляют при контролируемом потенциале электрода либо при контролируемом токе, а растворение выделенных на электроде в-в — только при контролируемом токе. Величина X прямо пропорциональна С влияние емкостных и др. эффектов на эту зависимость сказывается меньше, чем в прямой X. По ниж. границе определяемых конц. ( 10 М) тверсионная X. близка ийверсионной вольтамперометрии Этот метод легко автоматизируется. Прнмен. он для определения примесей в в-вах особой чистоты, напр, в полупроводниковых мате-риа-чах, при анализе природных вод и др. [c.670]

    Возрождение интереса к электрохимическим методам анализа можно объяснить разными причинами. Усовершенствование и упрощение конструкций приборов с появлением современных элементов электроники и операционных усилителей дало возможность создать универсальные серийные электрохимические приборы для таких методов, как импульсная полярография и инверсионная вольтамперометрия. Достижения в области элек-троаналитической теории, основанной на первых работах Гейровского и усовершенствованной с помощью вычислительных методов и моделирования, обеспечили прочную базу для развития этих методов. Интерес к определению малых концентраций металлов и органических веществ и в особенности стремление определить истинную форму исследуемого вещества в пробе, например при анализе объектов окружающей среды, привела к существенному расширению сфер применения электрохимических методов анализа. Кроме того, растущее понимание возможностей электрохимических методов в дополнение к спектроскопическим значительно увеличило эффективность применения таких методов, как циклическая вольтамперометрия, при исследованиях неорганических и органических веществ. [c.9]

    Практические трудности, связанные с анодной инверсионной вольтамперометрией, многочисленны. Так как метод инверсионной вольтамперометрии применим в интервале концентраций 10 —10- 1 М, то он наталкивается на трудности, присущие любому виду анализа следов, а именно на трудности из-за загрязнения растворов, адсорбции веществ на стенках сосудов и т. п. Например, Петри и Байер [61] исследовали основные процессы транспорта свинца(П) в анодном инверсионном вольтамперометрическом анализе морской воды. Первоначальная концентрация свинца(П) 6,3-10 М за 95 мин при изменении pH от 8 до 2 уменьшалась на 84 7о, при изменении pH от 4 до 6 —на 78% и в интервале pH от 3 до О — на 39%. Как сообщалось, основные потери обусловлены адсорбцией на стенках ячейки и на электродах следовательно, могут быть проблемы, специфически связанные с электрохимией (например, наличие электродов). Однако, подчеркнув лишь хорошо известное положение, что любой вид анализа следов труден и что инверсионная вольтамперометрия в этом смысле не является исключением, мы не рассматриваем практические аспекты самой методологии, так как эти проблемы свойственны любому конкретному варианту анодной инверсионной вольтамперометрии. В разд. 9.4.6 сопоставлены достоинства наиболее широко используемых методов. Эта задача облегчается статьей Бэтли и Флоренса [51], в которой с практической точки зрения исчерпывающе оцениваются и сравниваются большинство важнейших методов анодной инверсионной вольтамперометрии. Большая часть представленного здесь материала взята непосредственно из этой статьи [51]. а также из статьи [52]. [c.535]

    В методе инверсионной вольтамперометрии наилучшие результаты при анализе обеспечивают или вращаюшийся тонкопленочный электрод (если это возможно, покрытый ртутью на стадии осаждения), или ВРКЭ. Дальнейшее обсуждение будет ограничено только этими двумя видами электродов. Наилучший инверсионный метод будет почти всегда потенциостатическим [c.535]

    Определение микро- и субмикросодержаний тех или иных неорганических веществ (главным образом катионов) в методе инверсионной вольтамперометрии также зачастую является единственным возможным способом анализа объектов полупроводниковой технологии. По чувствительности и воспроизводимости этот метод превосходит атомно-абсорбционную спектроскопию, поскольку позволяет работать с большей навеской образца. [c.279]

    Оценивая будущее полярографического анализа, следует сказать, что, видимо, инверсионная вольтамперометрия не иап-дет ебе конкурентов и длительное время будет использоваться как аппаратурпо простой и легко автоматизируемый метод определения весьма малых количеств вещества. [c.292]

    Основными электрохимическими методами анализа являются циометрия, хронопотенциометрия, кулонометрия, кондуктометрия, рография и инверсионная вольтамперометрия. Обзор современного яния этих методов и их применения для анализа токсичных элеме том числе ртути, приведен в ряде монографий и обзорных статей [26, 223, 340, 456, 612]. В настоящем разделе приведены достоинства нек электрохимических методов. [c.118]

    Интервал определяемых концентраций 10 —10 М, нижний предел определений в методе с, линейной разверткой напряжения и в переменнотоковой полярографии достигает 10 и в инверсионной вольтамперометрии—10 М, при определении малых концентраций погрешность не превышает 3%. Метод достаточно селективен разрешающая способность по потенциалам (полярографические волны не сливаются) в классической полярографии 100—150 мВ, в переменнотоковой и в полярографии с линейной разверткой напряжения — 30—50 мВ. Разрешающая способность может быть увеличена, если регистрировать кривую AIlAE = f E). При этом на полярограмме при E = Ei/ наблюдается максимум, высота которого пропорциональна концентрации. Дополнительного разделения полярографических волн можно достичь, используя в качестве фонового электролита комплексо-образующий реагент. Например, раздельное определение ионов Со2+ и N 2+ в смеси на фоне 1 М раствора КС1 затруднительно Ei/ =—1,2 и —1,1 В соответственно), тогда как на фоне 1 М раствора KS N эти значения изменяются до —1,3 и —0,7 В. Метод быстр в исполнении единичные измерения занимают несколько минут и могут быть повторены для одного и того же раствора многократно (практически истощение деполяризатора в растворе не происходит). Ограничения метода полярографического анализа связаны с использованием ртутного электрода. [c.144]

    Для аналогичны - целей предлагается маркирование путем введения электрохимически активных фуппировок, которые легко могут быть определены электрохимическими методами 4]. Достаточно хорошо этот способ иллюстрируют примеры, описанные в работе [106]. При этом в качестве метки служат ионы металлов, образующие комплексные соединения с хелатообразующими реагентами, пришитыми к протеинам. В результате взаимодействия с определяемым компонентом ионы металлов высвобождаются и определяются методом инверсионной вольтамперометрии. Одновременно можно определять несколько компонентов, используя в качестве меток разные ионы. При проведении анализа в капиллярных трубках (объем 70 пл) предел обнаружения достигает 4,6 10 ° моль. Градуировочный фафик линеен в пределах четьфех порядков. [c.299]

    Требования практики всегда стимулировали развитие А. X. Так, в связи с необходимостью анализа полупроводниковых и др. материалов высокой чистоты получили развитие чувствит. методы — активационный аиализ, химикоспектральный анализ, искровая масс-снектрометрия, инверсионная вольтамперометрия и др., позволяющие определять до 10 — 10 % примесей. Для развития черной металлургии решающее значение приобрел экспресс-анализ отали в ходе плавки, к-рый осуществляется за время порядка [c.46]

    К широко применяют при определении микрокомпонен-тов в объектах окружающей среды, минер, сырье, металлах и сплавах, в-вах высокой чистоты. Наиб, распространение для анализа концентратов получили такие методы, как фотометрия, атомно-эмиссионный, атомно-абсорбционный, рентгенофлуоресцентный и нейтронно-активационный анализ, инверсионная вольтамперометрия. Орг. микрокомпоненты удобно определять газовой и жидкостной хроматографией, хромато-масс-спектрометрией. Для К. газообразующих микроэлементов широко применяют высокотемпературную экстракцию. [c.462]

    ХРОНОПОТЕНЦИОМЕТРЙЯ, электрохим. метод исследования и анализа, основанный на изучении изменения электродного потенциала Е во времени при контролируемом значении тока электролиза. Различают прямую и инверсионную X. Чаще применяют первый вариант. В этом случае электролиз осуществляют в неперемешиваемом р-ре определяемого электрохимически активного (электроактивного) в-ва при большом избьггке фонового электролита при этом значение тока, как правило, превышает предельный диффузионный ток Ij (см. Вольтамперометрия). Используют двух- и трехэлектродные ячейки (см. Хроноамперометрия). Регистрируют хроно-потенциометрич. кривую - зависимость электродного потенциала рабочего электрода (на к-ром происходит электролиз) от времени i. [c.323]

    Сурьму в ниобии и пятиокиси ниобия наиболее часто определяют методами спектрального анализа. Ниобий предварительно переводят в пятиокись. Прямые методы [49, 9721 позволяют определять до 1-10- % ЗЬ. Предварительное отделение ЗЬ методом испарения снижает предел обнаружения ЗЬ до 1-10 % [379]. Метод, включающий концентрирование ЗЬ соосаждением с СиЗ [6431, и метод, в котором удаляют Nb экстракцией 60%-ным раствором ТБФ в бензоле в среде 10 М Н2304 [3781, также характеризуются высокой Чувствительностью п-10 % (5г=0,15-н 0,20). Метод инверсионной вольтамперометрии применен для определения ЗЬ > 5-10" % (5г <1 0,26) в ниобатах щелочных металлов и пятиокиси ниобия [290]. Предварительное выделение 8Ь экстракцией в виде диэтилдитиокарбамината позволяет снизить предел обнаружения ЗЬ до 1-10 % [223]. [c.142]

    Для определения брома в газах пользуются колориметрией, инверсионной вольтамперометрией, измерением флуоресценции в видимой области и другими методами. Сравнительные данные о точности и воспроизводимости методов инверсионной вольтампе-рометрии и нейтронно-активационного анализа имеются в работе [435]. Краткая характеристика методов, использованных для определения брома в газовых смесях, приведена в табл. 13. [c.169]

    Обозначения методов определения ААС — атомно-аб-сорбционная спектрометрия АЭС — атомно-эмиссионная спектрометрия ВА — вольтамперометрия ИВА — инверсионная вольтамперометрия МСВИ — масс-спектрометрия вторичных ионов П — потенциометрия Т — титриметрический анализ Тб — турбинометрия Ф — фотометрия Фл — флуориметрия. [c.103]

    СЛЕДОВ ОПРЕДЕЛЕНИЕ, количественное определение в анализируемом в-ве примесей (элементов, ионов, хи>т. соед., фаз и т. п.), масса к-рых не превышает 1 мкг, а массовая доля — 0,01%. Для этого применяют эмиссионный спектральный анализ, масс-спектрометрию, нейтронно-активац. анализ, атомно-абсорбц. анализ с непламенной ато-млзацией, инверсионную вольтамперометрию, люминесцентный анализ н др. Первые два метода, позволяющие определять сразу большое число элементов, используют также для общей оценки чистоты материалов. Иногда предварительно проводят относит, иля абсолютное концентрирование определяемых примесей. Все операции осуществляют в условиях, обеспечивающих низкие значения поправки холостого (контрольного) опыта. Б микрообластях анализируемого образца конц. или кол-во примесей устанавливают методами локального анализа. [c.531]


Библиография для Вольтамперометрия инверсионные методы анализа: [c.233]   
Смотреть страницы где упоминается термин Вольтамперометрия инверсионные методы анализа: [c.66]    [c.81]    [c.120]    [c.278]   
Аналитическая химия Том 2 (2004) -- [ c.430 ]




ПОИСК





Смотрите так же термины и статьи:

Вольтамперометрия

Вольтамперометрия инверсионная

Использование метода инверсионной вольтамперометрии в анализе ионов переменной валентности

Использование метода инверсионной вольтамперометрии металлов в анализе

Использование метода инверсионной вольтамперометрии твердых фаз в анализе анионов

Электрохимические характеристики процесса разряда-ионизации элементов и условия анализа некоторых материалов методом инверсионной вольтамперометрии (реактивы и вещества высокой степени чистоты, материалы металлургического производства, природные и сточные воды, жидкие и твердые продукты питания)



© 2025 chem21.info Реклама на сайте