Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лагранжа множитель в линейном программировании

    МНОЖИТЕЛИ ЛАГРАНЖА В ЛИНЕЙНОМ ПРОГРАММИРОВАНИИ [c.258]

    В простейших случаях, когда целевая функция задана аналитически, используют классические методы нахождения экстремума методами дифференциального исчисления. При наличии ограничений типа равенств, наложенных на независимые переменные, используют метод множителей Лагранжа. В более сложных случаях, когда критерий оптимальности представлен в виде функционалов, используют методы вариационного исчисления-, при оптимизации процессов, описываемых системами дифференциальных уравнений, применяют принцип максимума Понтрягина. Используют также динамическое, линейное программирование и другие методы оптимизации. [c.38]


    В настоящее время для решения оптимальных задач применяют в основном следующие методы 1) методы исследования функций классического анализа 2) методы, основанные на использовании неопределенных множителей Лагранжа 3) вариационное исчисление 4) динамическое программирование 5) принцип максимума 6) линейное программирование 7) нелинейное программирование. В последнее время разработан и успешно применяется для решения определенного класса задач метод геометрического программирования (см. главу X). [c.29]

    В настоящее время для решения оптимальных задач применяют в основном следующие методы 1) исследование функций классического анализа 2) метод множителей Лагранжа 3) вариационное исчисление 4) динамическое программирование 5) принцип максимума 6) линейное программирование. Однако общего метода, пригодного для решения всех без исключения задач, возникающих на практике, нет. Вместе с тем каждый из перечисленных выше методов имеет предпочтительные области применения. Так, метод динамического программирования наилучшим образом приспособлен для решения задач оптимизации многостадийных процессов. Такие задачи чаще всего возникают при проектировании процессов ООС и СК, осуществляемых либо в многоступенчатых реакторах, либо в каскадах реакторов. Поэтому мы в сжатой форме рассмотрим основные положения метода динамического программирования. [c.191]

    Независимо от используемого метода линейного программирования при нахождении численных результатов исключительно важное значение имеет сокращение размерности. Остановимся здесь на двух способах сокращения размерности задачи. Один из них основан на использовании свойства однородности линейных уравнений, а другой состоит в применении, как и раньше, множителей Лагранжа. [c.256]

    Вычислить fk Z) с помощью метода динамического программирования, линейного программирования и с помощью метода множителя Лагранжа. [c.269]

    Функция желательности. Задачу оптимизации процессов, характеризующихся несколькими откликами, обычно сводят к задаче оптимизации по одному критерию с ограничениями в виде равенств или неравенств. В зависимости от вида поверхности отклика и характера ограничений для оптимизации предлагается использовать методы неопределенных множителей Лагранжа, линейного и нелинейного программирования, ридж-анализ [10] и др. К недостаткам этих способов решения задачи оптимизации следует отнести вычислительные трудности. В частности, при описании поверхности отклика полиномами второго порядка решение задачи на условный экстремум с применением неопределенных множителей Лагранжа приводит к необходимости решать систему нелинейных уравнений. Поэтому одним из наиболее удачных способов решения задачи оптимизации процессов с большим количеством откликов является использование предложенной Харрингтоном [23] в качестве обобщенного критерия оптимизации так называемой обобщенной функции желательности О. Для построения обобщенной функции желательности О предлагается преобразовать измеренные значения от- [c.207]


    Рассматриваемая система считается отказавшей, если в момент отказа работающего элемента -го типа все 5 запасных элементов этого же типа находятся в ремонте. Поставленная задача может решаться двумя способами. Первый из них является параметрическим обобщением метода множителей Лагранжа на случай дискретных переменных 143]. Второй основан на применении метода динамического программирования 130]. Второй способ более общий, может применяться при наличии нескольких линейных ограничений, полностью формализуется и дает приемлемую точность результатов. Наличие этих факторов позволяет применять модель определения оптимального уровня запасов резервных элементов на химических предприятиях различных типов, поэтому выбираем метод решения задачи, основанный на принципах динамического программирования. [c.100]

    Функция желательности. Задачу оптимизации процессов, характеризующихся несколькими откликами, обычно сводят к задаче оптимизации по одному критерию с ограничениями в виде равенств или неравенств. В зависимости от вида поверхности отклика и характера ограничений для оптимизации предлагается использовать методы неопределенных множителей Лагранжа, линейного и нелинейного программирования, ридж-анализ и др. К недостаткам этих способов решения задачи оптимизации следует отнести вычислительные трудности. В частности, при описании поверхности отклика полиномами второго порядка решение задачи на условный экстремум с применением неопределенных множителей Лагранжа приводит к необходимости решать систему нелинейных уравнений. Поэтому одним из наиболее удачных способов решения задачи оптимизации процессов с большим количеством откликов, является использование предложенной Харрингтоном в качестве обобщенного критерия оптимизации так назьгааемой обобщенной функции желательности В. Для построения обобщенной функции желательности Г) предлагается преобразовать измеренные значения откликов в безразмерную шкалу желательности й. Построение шкалы желательности, которая устанавливает соотношение между значением отклика у и соответствующим ему значением с1 (частной функцией желательности), является в своей основе субъективным, отражающим отношение исследователя (потребителя) к отдельным откликам. [c.205]


Смотреть страницы где упоминается термин Лагранжа множитель в линейном программировании: [c.162]    [c.177]    [c.38]   
Динамическое программирование в процессах химической технологии и методы управления (1965) -- [ c.258 , c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Лагранжа

Линейное программирование

Программирование



© 2025 chem21.info Реклама на сайте