Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Динамическое программирование и принцип максимума

    Для получения численных результатов важное место отводится нелинейному программированию в решении оптимальных задач такими методами, как динамическое программирование, принцип максимума и т. п. на определенных этапах их применения. [c.33]

    Расчеты оптимальных условий проводятся математическими методами (вариационное исчисление, динамическое программирование, принцип максимума Понтрягина) или часто различными методами направленного поиска [c.69]


    Когда технологическая топология ХТС характеризуется совокупностью последовательных, параллельных или обводных технологических связей, эффективными методами второго пути оптимизации являются динамическое программирование, принцип максимума Понтрягина и принцип декомпозиции Данцига — Вольфа. [c.295]

    Особая группа задач оптимизации — задачи, в которых критерий оптимальности представляет собой не функцию, а функционал [см. раздел 13, обсуждение формул (13.26) — (13.27)]. Так бывает, если критерий зависит не от значений каких-то факторов, а от характера непрерывного изменения этих факторов например, если протекание переходного процесса определяется непрерывным изменением управляющего воздействия во времени, или если состав смеси на выходе из аппарата идеального вытеснения определяется профилем температуры по всей его длине. В таких задачах используют вариационные методы (вариационное исчисление, динамическое программирование, принцип максимума). [c.252]

    Для оптимизации процессов с распределенными параметрами предпочтительнее все же оказывается принцип максимума, которому посвящена следующая глава. Однако всегда нужно учитывать воз-мо кность аппроксимации непрерывного процесса дискретным многостадийным процессом и пользоваться указанной возмо кностью для решения оптимальных задач невысокой размерности. Это обусловлено 1см, что метод динамического программирования представляет в распоряжение исследователя весьма удобную процедуру оптимизации многостадийных процессов, которая сравнительно легко программируется на вычислительных ма1[шнах. [c.319]

    Применение классических методов математического анализа и вариационного исчисления для оптимизации химических реакторов наталкивалось на значительные затруднения, связанные с наличием в реальных задачах ограничений на фазовые и управляющие переменные. Аналогичные трудности возникали при постановке оптимальных задач в других областях науки и техники. Это способствовало развитию таких мощных методов, как метод динамического программирования принцип максимума методы нелинейного программирования 2о-22  [c.10]

    В простейших случаях, когда целевая функция задана аналитически, используют классические методы нахождения экстремума методами дифференциального исчисления. При наличии ограничений типа равенств, наложенных на независимые переменные, используют метод множителей Лагранжа. В более сложных случаях, когда критерий оптимальности представлен в виде функционалов, используют методы вариационного исчисления-, при оптимизации процессов, описываемых системами дифференциальных уравнений, применяют принцип максимума Понтрягина. Используют также динамическое, линейное программирование и другие методы оптимизации. [c.38]


    Основные математические методы оптимизации (классический математический анализ, вариационное исчисление, линейное и динамическое программирование, принцип максимума и др.) описываются в специальной литературе .  [c.20]

    Для сложных реакций оптимизация селективности промышленного процесса обычно играет первостепенную роль. Включение в число оптимизируемых переменных параметров пористой структуры и размера зерна катализатора для сложных реакций чрезвычайно усложняет задачу оптимизации химического реактора. В принципе аналитические методы (динамического программирования, принцип максимума Понтрягина) позволяют получить условия оптимальности для параметров, характеризующих пористую структуру катализатора. Однако факт, что для определения скорости реакции необходимо решать краевую задачу для системы дифференциальных уравнений 2-го порядка, определяющих изменение концентраций реагентов в зерне, делает бесполезными аналитические методы. [c.199]

    От недостатков общей схемы метода динамического программирования можно, однако, в значительной мере избавиться, используя аналитический метод поиска оптимума на каждой стадии. Именно этот способ будет применен к решению задач оптимизации цепочек реакторов, рассматриваемых ниже. Отметим, что основные расчетные формулы, которые получим, могут быть выведены не только с помощью метода динамического программирования, но и на основе дискретного варианта принципа максимума Понтрягина [18] или классических вариационных методов. [c.384]

    Как и в предыдущем случае, для рещения этой задачи могут быть использованы методы динамического программирования, принцип максимума и др. [c.75]

    После проверки адекватности полной математической модели исследуемому объекту (процессу) в цикле с ЭВМ следует провести оптимизацию математической модели любым из известных методов. К методам оптимизации относятся динамическое программирование, нелинейное программирование, принцип максимума и другие. Целью всех этих методов является нахождение оптимальных условий (температуры, давления, соотиошения компонентов в реакционной смеси, избирательности, продолл<ительности и т. д.) [c.44]

    Решение этой задачи составляет содержание математической теории оптимизации. Часть математических методов оптимизации — в первую очередь, дифференциальное исчисление и вариационное исчисление — возникли на классическом этапе развития математики. В середине XX века создан целый ряд новых методов линейное программирование, динамическое программирование, нелинейное программирование, принцип максимума. С ними можно познакомиться по работам [23—26]. [c.182]

    Для решения задач оптимизации химико-технологических процессов обычно используют методы нелинейного программирования (поисковые методы) [1, 3] и методы теории оптимального управления вариационного исчисления [4], динамического программирования 15], принципа максимума Понтрягина [6], дискретного принципа максимума 17]. Наибольшее распространение получили поисковые методы как наиболее гибкие и универсальные. Эти методы находят также широкое применение при решении задач идентификации (определение некоторых коэффициентов уравнений, представляющих собой математическую модель исследуемого процесса). Кроме того, поисковые методы могут быть эффективно использованы при синтезе оптимальной структуры химико-технологических систем, который в общем случае представляет собой задачу дискретно-непрерывного программирования в частности, они могут быть использованы при получении нижних оценок в методе ветвей и границ (см. гл. VI). [c.14]

    После проверки адекватности полной математической модели исследуемому объекту (процессу) в цикле с ЭВМ следует провести оптимизацию математической модели любым из известных методов. К методам оптимизации относятся динамическое программирование, нелинейное программирование, принцип максимума и другие. Цель всех этих методов — нахождение оптимальных условий (температуры, давления, соотношения компонентов в реакционной смеси, избирательности, продолжительности и т. д.) проведения процесса в зависимости от общих технико-экономических показателей процесса. Обычно оптимальный режим находят в две ступени. Сначала определяют наилучшие условия процесса теоретически, исходя из его максимальной интенсивности, затем выбирают аппарат, позволяющий наиболее близко подойти к теоретическому оптимуму [91. [c.44]

    Важной характеристикой любой оптимальной задачи является ее размерность п, равная числу переменных, задание значений которых необходимо для однозначного определения состояния оптимизируемого объекта. Как правило, решение задач высокой размерности связано с необходимостью выполнения большого объема вычислений. Ряд методов (например, динамическое программирование и дискретный принцип максимума) специально предназначен для решения задач оптимизации процессов высокой размерности, которые могут быть представлены как многостадийные процессы с относительно невысокой размерностью каждой стадии. [c.34]


    Таким образом, даже тогда, когда уравнение Эйлера существует и можно найти его общий интеграл, зто еще не означает, что получено решение исходной оптимальной задачи. Лишь относительно узкий круг задач с достаточно гладкими решениями и хорошими ограничениями позволяет успешно применять методы вариационного исчисления. В остальных же случаях более эффективными оказываются такие методы, как динамическое программирование и принцип максимума. [c.243]

    В уравнении (IX.60) максимум достигается варьированием только параметров, управляющих процессом на первой по ходу потока стадии. Принцип оптимальности позволяет, таким образом, заменить задачу одновременного выбора оптимальных значений ММ независимых переменных гораздо более простой задачей Л -стадийного выбора, на каждой стадии которого оптимум достигается варьированием М переменных. Другой отличительной чертой поиска оптимума методом динамического программирования является то, что задача решается не для единственного процесса с какими-то опре- [c.382]

    При оптимизации дискретных многостадийных процессов использование математического аппарата принципа максимума зачастую оказывается более эффективным, чем применение метода динамического программирования. В особенности это относится к решению оптимальных задач, где размерность отдельных стадий затрудняет использование вычислительной процедуры динамического программирования [11]. [c.386]

    Наряду с многоуровневыми методами для решения задачи оптимизации сложных ХТС можно также использовать методы дискретного динамического программирования и дискретного принципа максимума с применением двух рассмотренных алгоритмов координации, [c.235]

    Как уже указывалось, примерно в одинаковое время с методом динамического программирования Л. С. Понтрягиным с сотр. был развит так называемый принцип максимума. Этот метод использован в ряде исследований для расчетов оптимальных режимов работы химических реакторов. Так, описаны общие вопросы определения оптимальной температурной кривой 2 . 27. рассмотрены задачи о нахождении этой кривой в реакторе для окисления этилена в окись этилена и оптимальной температуры холодильника [c.11]

    В книге в доступной форме изложены основы методов оптимизации химических производств (классический анализ, вариационное исчисление, принцип максимума, динамическое, линейное, нелинейное и геометрическое программирование). Сформулированы общие положения, касающиеся выбора критериев оптимальности химико-технологических процессов, и приведены их математические модели. Рассмотрены задачи оптимизации конкретных процессов. Второе издание (первое издание выпущено в 1969 г.) дополнено изложением основ геометрического программирования, а также примерами, иллюстрирующими практическую реализацию методов нелинейного программирования. [c.4]

    Следующий важный этап оптимизации химических реакторов — выбор метода расчета оптимальных режимов. Широкое распространение получили как классические методы математического анализа и вариационного исчисления, так и новые методы — принцип максимума динамическое и нелинейное программирование. В системе автоматической оптимизации время расчета оптимальных режимов Тр должно быть существенно меньше среднего времени между двумя последовательными возмущениями, т. е. [c.21]

    Известен ряд работ, где для управления процессом ферментации используют оптимальные подпитки субстратом в ходе периодического процесса ферментации [3, 28], оптимальный температурный профиль [23, 27], изменения рОг среды в течение режима ферментации [25]. При рещении указанных задач применяют такие методы оптимизации, как принцип максимума Понтрягина, динамическое, нелинейное программирование. [c.33]

    Для того чтобы иметь широкие возможности применять наиболее подходящий математический метод оптимизации, необходимо на базе всех существующих (методы решения линейных и нелинейных уравнений, методы поиска, вариационные методы, дискретный принцип максимума Понтрягина, динамическое программирование, метод оврагов Гельфанда) методов оптимизации химикотехнологических комплексов и изучения устойчивости всего комплекса на внешние воздействия (колебания в сырье, температуре, давлении и пр.) разработать информационно-математическую систему. Эта система должна иметь средства для описания любого ХТК с желаемой степенью детализации, уметь выдавать сведения [c.157]

    Большая часть методов решения оптимальных задач основана на предположении, что математическая модель оптимизируемого объекта известна. Более того, многие методы оптимизации используют конкретные свойства объекта и его математического описа-, ния. Например, для многостадийных процессов эффективным методом оптимизации является динамическое программирование для процессов, описываемых дифференциальными уравнениями, — принцип максимума. [c.27]

    В настоящее время для решения оптимальных задач применяют в основном следующие методы 1) методы исследования функций классического анализа 2) методы, основанные на использовании неопределенных множителей Лагранжа 3) вариационное исчисление 4) динамическое программирование 5) принцип максимума 6) линейное программирование 7) нелинейное программирование. В последнее время разработан и успешно применяется для решения определенного класса задач метод геометрического программирования (см. главу X). [c.29]

    Таким образом, показано, что результаты, получаемые при применении метода множителей Лагранжа, вариационного исчисления и динамического программирования, можно представить в форме условий принципа максимума. Вместе с тем, соотношения принципа максимума, найденные независимо от этих методов, имеют более общий характер и позволяют решать задачи, которые не могут быть сформулированы в терминах этих методов или требуют специального обоснования возможности их применения. [c.404]

    Вместе с тем, владение методами нелинейного программирования нужно не только как самоцель, но также и в связи с использованием таких методов оптимизации, как динамическое программирование или принцип максимума, в которых на различных этапах приходится решать задачи нелинейного программирования. [c.476]

    В книге в доступной форме изложены основы методом оптимизации (классический анализ, вариационное исчисление, принцип максимума, динамическое, линейное и нелинейное программирование) с иллюстрацией их на объектах химической технологии. Сформулированы общие положения, касающиеся выбора критериев о[1ти-мальности химико-технологических процессов, и приведены их математические модели. Рассмотрены задачи, связанные с оптимизацией конкретных процессов. [c.4]

    Метод принципа максимума для сложвцх процессов значительно экономнее метода динамического программирования. На основе данного метода удается создать общий подход к решет нию задач оптимизации стационарных и нестационарных каталитических процессов. Этот метод заключается в решении краевой задачи для системы обыкновенных дифференциальных уравнений и определении оптимального управления на каждом шаге интегрирования исходя из условия максимума некоторой функции Решение состоит в выборе некоторых начальных условий и их дальнейшего уточнения для нахождения оптимального режима. Указанная процедура позволяет разработать эффективный численный метод решения краевых задач. [c.495]

    В настоян ее время для решения оптимальных задач применяют в основном следую1цие методы 1) методы исследования функций классического анализа 2) методы, основанные на использовании неопределенных множителей Лагранжа 3) вариационное исчисление 4) динамическое программирование 5) принцип максимума 6) лгшеГнше программирование 7) нелинейное программирование. [c.29]

    Для решения первых четырех задач были разработаны методы, основанные на использовании численных методов нелинейного программирования (поисковых методов) [И, 12] и методов теории оптимального управления — вариационного исчисления [15], динамического программирования [16], принципа максимума Понт-рягина [17], дискретного принципа максимума [18]. Пятая задача принципиально отличается от первых трех тем, что в ней наряду с непрерывными искомыми переменными имеются целочисленные переменные. Отсюда для ее решения необходимо применять методы [c.23]

    Как правило, нельзя рекомендовать какой-либо один метод, который можно использовать для решения всех без исключения задач, возникающих на практике. Одни методы в этом отношении являются более общими, другие — менее общими. Наконец, целую группу методов (методы исследования функций классического анализа, метод множителей Лагранжа, нелинейное программирование) иа определенных этапах реикния оптимальной задачи можно применять в сочетании с другими методами, например динамическим программированием и принципом максимума. [c.29]

    Кроме того, на примере оптимизации реактора изложен подход к решению реальной вариационной задачи с ограничениями типа неравенств. Решение этих задач представляет собой, вообще говоря, весьма сложную проблему. Однако задачу оптимизации реактора идеального вытеснения все же можно решить, если принять во внимание некоторые свойства оптимизируемого процесса. К сожалению, и общем случае не представляется возможным указать достаточно удобные методы решения вариационных задач с ограничениями тйпа неравенств. Поэтому для каждого конкретного процесса приходится искать са.мый удобный прием или же решать задачу с помощью других методов, например динамического программирования или принципа максимума, более приспособленных для решения таких адач. [c.222]

    Книга посвящена актуальному в настоящее время вопросу применения математических методов для расчета оптимальных (наилучших) режимов технологических процессов. Дана характеристика основных этапов работ по статической, квазистатической и динамической оптимиаации как действующих химических реакторов, так и при их проектировании. Сопоставлены два важнейших метода оптимизации — метод поиска на объекте и метод оптимизации с помощью математической модели. Большое внимание уделено математическим способам оптимизации — нелинейному программированию и Принципу максимума. [c.4]


Смотреть страницы где упоминается термин Динамическое программирование и принцип максимума: [c.27]    [c.547]    [c.12]    [c.30]    [c.235]   
Методы оптимизации в химической технологии издание 2 (1975) -- [ c.403 ]




ПОИСК





Смотрите так же термины и статьи:

Принцип максимума

Программирование

Программирование динамическое



© 2024 chem21.info Реклама на сайте