Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы исследования функций классического анализа

    МЕТОДЫ ИССЛЕДОВАНИЯ ФУНКЦИЙ КЛАССИЧЕСКОГО АНАЛИЗА [c.87]

    Остается заметить, что методы исследования функций классического анализа являются той базой, на которой основано использование и более тонких и общих методов решения задач оптимизации, поэтому указанные методы не теряют своего значения в теории оптимальных процессов по мере дальнейшего ее развития. [c.138]

    В настоящее время для решения оптимальных задач применяют в основном следующие методы 1) методы исследования функций классического анализа 2) методы, основанные на использовании неопределенных множителей Лагранжа 3) вариационное исчисление 4) динамическое программирование 5) принцип максимума 6) линейное программирование 7) нелинейное программирование. В последнее время разработан и успешно применяется для решения определенного класса задач метод геометрического программирования (см. главу X). [c.29]


    Методы исследования функций классического анализа (см. главу III) представляют собой наиболее известные методы решения несложных оптимальных задач, с которыми инженер знакомится при изучении курса математического анализа. Обычной областью использования данных методов являются задачи с известным аналитическим выражением критерия оптимальности, что позволяет найти не очень сложное, также аналитическое выражение для производных. Полученные приравниванием нулю производных уравнения, определяющие экстремальные решения оптимальной задачи, крайне редко удается решить аналитическим путем, поэтому, как правило, применяют вычислительные машины. При этом надо решить систему конечных уравнений, чаще всего нелинейных, для чего приходится использовать численные методы, аналогичные методам нелинейного программирования (см. главу IX), [c.30]

    Дополнительные трудности при решений оптимальной задачи методами исследования функций классического анализа возникают вследствие того, что система уравнений, получаемая в результате их применения, обеспечивает лишь необходимые условия оптимальности. Поэтому все решения данной системы (а их может быть и несколько) должны быть проверены на достаточность. В результате такой проверки сначала отбрасывают решения, которые не определяют экстремальные значения критерия оптимальности, а затем среди остающихся экстремальных решений выбирают решение, удовлетворяющее условиям оптимальной задачи, т. е. наибольшему или наименьшему значению критерия оптимальности в зависимости от постановки задачи. [c.31]

    По существу метод динамического программирования представляет собой алгоритм определения оптимальной стратегии управления на всех стадиях процесса. При этом закон управления на каждой стадии находят путем решения частных задач оптимизации последовательно для всех стадий процесса с помощью методов исследования функций классического анализа или методов нелинейного программирования. Результаты решения обычно не могут быть выражены в аналитической форме, а получаются в виде таблиц. [c.32]

    Выше уже неоднократно отмечалось, что математическая формулировка оптимальной задачи часто эквивалентна задаче отыскания экстремума функции одной или многих переменных. Поэтому для решения таких оптимальных задач могут быть использованы различные методы исследования функций классического анализа и главным образом методы поиска экстремума. [c.92]


    Методы исследования функций классического анализа в основном применяют в тех случаях, когда известен аналитический вид зависимости оптимизируемой функции R от независимых переменных Х . Это позволяет найти также в аналитическом виде производные оптимизируемой функции, используя которые и формулируют необходимые и достаточные условия существования экстремума. [c.92]

    Решение задач, связанных с отысканием оптимальных условий проведения химических реакций, несомненно играет важнейшую роль в общей организации химического производства, так как зачастую позволяет при этом же аппаратурном оформлении и тех же затратах сырья получить большой выход полезной продукции или повысить ее качество. Кроме того, химические процессы решающим образом влияют на > экономику производства, поэтому существенное значение приобретает экономически обоснованный выбор эксплуатационных параметров химических реакторов. В данном разделе изучены оптимальные условия для ряда простейших реакций, проводимых в различных аппаратах, с учетом разных экономических оценок эффективности процессов. При этом рассмотренные ниже примеры могут явиться иллюстрацией возможностей использования методов исследований функций классического анализа для решения частных задач оптимизации химических реакторов. [c.108]

    Решение задачи оптимизации непрерывного реактора идеального вытеснения в общем случае значительно более сложно, чем оптимизация реактора идеального смешения. Это в первую очередь обусловлено тем, что реактор вытеснения представляет собой объект с распределенными параметрами и его математическое описание содержит дифференциальные уравнения, решение которых в аналитической форме может быть получено лишь в весьма ограниченном числе случаев. В связи с этим ниже рассмотрены некоторые частные задачи оптимизации реакторов идеального вытеснения, которые можно решить при использовании методов исследования функций классического анализа в аналитической форме либо в форме процедуры вычислений, приводящей к определению оптимальных условий. [c.117]

    Рассмотренными выше примерами использования методов исследования функций классического анализа, разумеется, не исчерпываются возможности их применения для решения оптимальных задач химической технологии. Число примеров легко может быть увеличено, особенно за счет тех случаев, когда нельзя получить решения в аналитической форме и необходимы численные методы. [c.146]

    Область использования методов исследования функций классического анализа относится главным образом к тем задачам, когда относительно просто можно найти аналитическое выражение для параметров, входящих в критерий оптимальности. Однако применение этих методов оказывается также полезным при предварительном анализе и более сложных задач в первоначальном, возможно относительно грубом приближении. [c.146]

    Методы исследования функций классического анализа, рассмотренные в предыдущих главах, за исключением лишь некоторых случаев, наиболее эффективно применяются для оптимизации процессов с сосредоточенными параметрами. Лишь в ряде случаев, используя особенности математического описания конкретных процессов, указанными методами удается решить некоторые задачи оптимизации процессов с распределенными параметрами. Для этих процессов решение характеризуется не совокупностью значений конечного числа независимых переменных, а соответствующей функцией независимой переменной (как, например, при решении задачи выбора оптимального температурного профиля в реакторе вытеснения). [c.202]

    В настоян ее время для решения оптимальных задач применяют в основном следую1цие методы 1) методы исследования функций классического анализа 2) методы, основанные на использовании неопределенных множителей Лагранжа 3) вариационное исчисление 4) динамическое программирование 5) принцип максимума 6) лгшеГнше программирование 7) нелинейное программирование. [c.29]

    Как правило, нельзя рекомендовать какой-либо один метод, который можно использовать для решения всех без исключения задач, возникающих на практике. Одни методы в этом отношении являются более общими, другие — менее общими. Наконец, целую группу методов (методы исследования функций классического анализа, метод множителей Лагранжа, нелинейное программирование) иа определенных этапах реикния оптимальной задачи можно применять в сочетании с другими методами, например динамическим программированием и принципом максимума. [c.29]

    Методы исследования функций классического анализа при наличии ограниченной области изменения независимых переменных можно использовать только для отыскания экстремальных значении внутри указанной области. В особенности это относится к задачам с большим числом независимых переменных (црактически больше двух), в которых анализ значений критерия оптимальности на границе допустимой области изменения переменных станоппт, я весьма слом ным. [c.30]



Смотреть страницы где упоминается термин Методы исследования функций классического анализа: [c.32]    [c.110]    [c.30]   
Смотреть главы в:

Методы оптимизации в химической технологии -> Методы исследования функций классического анализа

Методы оптимизации в химической технологии издание 2 -> Методы исследования функций классического анализа




ПОИСК





Смотрите так же термины и статьи:

Анализ методы классические

Классические

Классические исследования

Функция анализа



© 2024 chem21.info Реклама на сайте