Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нестационарный режим теплообменника

    Связь между возмущениями Tj и определяется уравнениями, описываюш,ими нестацирнарный режим теплообменника. Если линейные скорости горячего и холодного потоков одинаковы, то нестационарные уравнения имеют вид  [c.350]

    Многополочные реакторы (рис. 4.26). Для анализа устойчивости многополочных реакторов был использован тот же метод, что и при исследовании более простой системы реактор - теплообменник . Был рассмотрен нестационарный режим в некоторой окрестности известного стационарного режима, описываемого линейной системой дифференциальных уравнений с постоянными коэффициентами, подобной [c.226]


    Указанные модели используют для исследования переходных процессов (нестационарных режимов). При этом могут быть построены динамические характеристики теплообменников, анализом работы которых можно определить время выхода аппарата на стационарный режим. [c.189]

    Анализ устойчивости. Для строгого обоснования условий устойчивости системы реактор — теплообменник необходимо исследовать, как изменяются со временем малые возмущения стационарного режима. Решим эту задачу для частного случая 8 = 1 (система без байпаса) [15]. Очевидно, малое возмущение температуры холодного потока на выходе теплообменника (1), возникшее в некоторый момент времени t, после прохождения реактора усилится в % раз (где % — параметрическая чувствительность температуры на выходе адиабатического слоя к температуре на его входе) и спустя время Si (равное суммарному времени прохождения потоком реактора и трубопроводов, связывающих реактор с теплообменником) вызывает возмущение температуры горячего потока на входе в теплообменник Тг (1) = 7Ji (1). Связь между возмущениями и определяется уравнениями, описывающими нестационарный режим теплообменника. Если линейные скорости горячего и холодного потоков одинаковы, то нестационарные уравнения имеют вид  [c.350]

    Теплообменник типа смешение — смешение (рис. 1[-15). Математическое описание теплообменника в данном случае задают системой уравнений типа (11,20), относящихся к обоим теплоносителям. Интенсивность источника тепла при этом чпределяется соотнонлепием (И,28). Стационарный режим теплообменника можно вписать нестационарными уравнениями, в которых производные по времени пола- [c.62]

    Сходство формул (7.45а) и (7.21а) очевидно. По существу здесь упорядоченный нестационарный (квазистационарный) режим работы регенератора сведен в расчетном смысле к стационарному режиму работы рекуперативного теплообменника. Тепловая нагрузка регенератора в единицу времени определяется как б = ОДц. Отсюда нетрудно получить и выражение для пропускной способности регенератора О/А .  [c.601]

    Основная характеристика данного процесса — температурный режим, который для установок с двухступенчатым теплообменником определяется температурами газа в низкотемпературном сепараторе и в точке ввода ингибитора гидратообразования. Температурный режим процесса сепарации нарушается при изменении расхода газа через установку (дебиты скважин) и температуры окружающей среды. Изменение расхода газа на ГДП, вызываемое изменением газопотребления, аварийным и плановыми отклонениями режимов работы скважин, в общем случае относится к нестационарным случайным процессам. [c.28]


    Если имеется три стационарных решения, то среднему из ннх соответствует величина параметрической чувствительности х > Хо Такой стационарный режим должен быть неустойчивым, поскольку в этих условиях малые возмущения стационарного режима усиливаются, проходя реактор и теплообменник (так как Хо ) В общем случае, когда имеется 2и+1 точек пересечения кривой и прямой линий на рисунке типа рис. VIII.8, п промежуточных решений обязательно должны быть неустойчивыми. Соблюдение неравенства X <С Хо является необходимым условием устойчивости процесса , однако, чтобы доказать достаточность этого условия, нельзя ограничиваться анализом одних только стационарных уравнений и необходимо исследовать поведение процесса в нестационарных условиях (см. ниже). [c.347]

    А. Тепло- и массопереиос к твердым телам и жидким средам прн внешнем обтекании тел и течении в каналах, при вынужденной и естественной конвекции. Перенос теплоты к твердым телам и жидким средам при ламинарном течении с заданными граничными условиями или условиями сопряжения полностью описывается законом теплопроводности Фурье, если только тепловые потоки не превышают своих физических пределов (фононный, молекулярный, электронный перенос н т. д.). Возможность решения сложных задач в большей или меньшей степени зависит только от наличия необходимой вычислительной техники. Для расчета ламинарных течений, включая и снарядный режим, к настоящему времени разработано достаточно много стандартных про1-рамм, и их число продолжает непрерывно увеличиваться. Случай движущихся тел включает в себя также и покоящиеся тела, так как координатную систему можно связать с телом и, таким образом, исключить относительное движение. Поэтому методы расчета теплопередачи к твердым телам и жидким средам при их ламинарном течении полностью аналогичны. Единственным фактором, влияющим на тепловой поток как при нестационарном нагреве твердого тела, так и при квазистационар-ном ламинарном течении, является время контакта. Хотя часто коэффициент теплоотдачи нри ламинарном течении представляется как функция скорости, необходимо обязательно помнить, что скорость течения есть только мера времени контакта или времени пребывания среды в теплообменнике. Эта концепция обсуждалась в 2.1.4, где было показано, каким образом и — а-метод, используемый обычно для описания ламинарного теплообмена, можно применить и для расчета нестационарного теплопереноса а твердом теле. В разд. 2.4 эта концепция получает даль- [c.92]


Смотреть страницы где упоминается термин Нестационарный режим теплообменника: [c.65]    [c.70]    [c.314]    [c.325]   
Проблемы теплообмена (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Нестационарный режим теплообменника периодического действия

Нестационарный режим теплообменника с одним теплоносителем

Теплообменники, работающие в нестационарном режиме

Ток нестационарный



© 2025 chem21.info Реклама на сайте