Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий, пятиокись адсорбция

    Для окисления олефинов иногда используют пятиокись ванадия [59, 190] (хотя, как правило, на ней осуществляют окисление ароматических углеводородов). Изучено окисление пентена-2 на УгОз и предложены схемы превращения углеводорода с образованием различных кислородсодержащих продуктов. Предполагается, что при адсорбции пентена-2 на УгОа образуется я-комплекс, а при дальнейшем его взаимодействии с кислородом решетки возникают промежуточные формы I и II, разлагающиеся по схеме  [c.84]


    Нафталин более активный донор, чем водород скорость его ионизации выше, и поэтому, когда он попадает на пятиокись ванадия, то отдает больше электронов, чем может захватить кислород. Этот избыток используется на восстановление пятиокиси ванадия до низших окислов. Ввиду того, что четырехокись вана-дия обладает большей электропроводностью, чем пятиокись, при восстановлении катализатора облегчается адсорбция и ионизация кислорода, а скорость процессов приближается к скорости ионизации нафталина, когда же они сравняются, восстановление катализатора прекращается. [c.123]

    Если сравнить два типичных полупроводниковых катализатора — закись меди и пятиокись ванадия, то характер связи адсорбированных с их поверхностью молекул также неодинаков. На закиси меди кислород нри 300° прочно связан с поверхностью, которую он полностью покрывает даже при пониженных давлениях, а на УоОд адсорбция кислорода очень мала (1—2% от монослоя нри 300 — 400°), и при 400° начинается его десорбция. На закиси меди легко может протекать взаимодействие адсорбированного кислорода и непредельного углеводорода газовой фазы, вероятно, с образованием гидроиерекиси, в результате распада которой образуется непредельный альдегид. На УзОз ири взаимодействии с кислородом газовой фазы образуются насыщенные альдегиды (ацетальдегид, формальдегид) с меньшим числом атомов углерода, чем в исходной молекуле углеводорода. Одновременно протекает реакция с образованием ненасыщенного альдегида. [c.230]

    По мнению Киюры , во всех ванадиевых катализаторах, в том числе и промотированных окислами щелочных металлов, каталитически активным соединением является пятиокись ванадия. Соединения щелочных металлов не принимают непосредственного участия в каталитическом процессе их роль сводится к увеличению дисперсности пятиокиси ванадия при приготовлении катализатора. Киюра полагает, что когда соединения ванадия осаждаются на силикагель из растворов ванадатов щелочных металлов, ионы натрия или калия образуют первый адсорбционный слой, а ионы ванадата второй слой. Адсорбция ванадата на носителе способствует сохранению его в тонкодисперсном состоянии даже при высокой температуре. При обработке такого катализатора при температуре 400° газовой смесью, содержащей двуокись серы, образуются высокодисперсные частицы пятиокиси ванадия, осаждающиеся на носителе. Присутствие соединений щелочных металлов препятствует росту кристаллов пятиокиси ванадия на носителе из двуокиси кремния. [c.204]


    Пятиокись ванадия, приготовленная разложением оксалата ванадила (катализатор I), каталитически более активна, чем пятиокись ванадия, приготовленная разложением метаванадата аммония (катализатор II). В настоящей работе исследовалась кинетика хемосррбции на катализаторах I и II паров метанола и кислорода и изменение при этом электропроводности. В интервале 100—450 С кинетика хемосорбции кислорода хорошо описывается уравнением Еловича. Скорость адсорбции кислорода на катализаторе I вдвое больше, чем на катализаторе II. Ката- шзатор I адсорбирует также значительно больше паров метанола. Электропроводность обоих катализаторов уменьшается с повышением начального давления кислорода. Однако при одинаковых условиях скорость падения электропроводности всегда больше для катализатора. I. В случае хемосорбции метанола электропроводность обоих катализаторов увеличивается с повышением его начального давления, причем при температурах ниже 100° С не удалось обнаружить изменений электропроводности катализатора II, в то время как электропроводность катализатора I увеличивалась даже при 70° С. Предложено объяснение высокой эффективности катализатора I. [c.502]


Смотреть страницы где упоминается термин Ванадий, пятиокись адсорбция: [c.223]    [c.235]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадила пятиокись

Ванадия пятиокись

Пятиокись



© 2025 chem21.info Реклама на сайте