Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитически активные органические соединения

    Жидкий фтористый водород является прекрасным растворителем многих органических соединений, например ароматических соединений, спиртов, кислот, простых эфиров (последние в присутствии фтористого водорода ведут себя как слабые кислоты и могут присоединять один протон). Таким образом, фтористый водород способен выступать в качестве и реакционной среды и катализатора одновременно. Трифторид бора, взаимодействуя с фтористым водородом, образует фторборную кислоту, отличающуюся высокой кислотностью и по каталитической активности значительно превосходящую фтористый водород. Кроме того, низкие вязкость и поверхностное натяжение фтористого водорода способствуют хорошему перемешиванию реагентов при гетерофазном процессе. Недостатком системы НР ВРз является, однако, ее высокая коррозионная активность. В опытах использовали автоклав из монель-металла, обладающего достаточно высокой коррозионной стойкостью. [c.303]


    Фундаментом прогнозирования активности, селективности и других специфических свойств катализатора должна стать детальная микроскопическая теория гетерогенного катализа, опирающаяся на современные представления квантовой химии и теории твердого тела. Описывая элементарные акты реакций и превращений вещества на поверхности реального катализатора, такая теория в принципе дает возможность не только в полной мере понять механизм, кинетику и термодинамику катализа, но и предсказать каталитическую способность того или иного металла, полупроводника, диэлектрика в конкретной химической реакции. Однако незавершенность теорий катализа не позволяет однозначно предсказывать оптимальный состав промышленных катализаторов и другие их характеристики для действующих и проектируемых производств. До сих пор решение проблемы подбора катализаторов опирается в значительной мере на эмпирические подходы, сопряженные с большими затратами рутинных форм труда. Так, в поисках первого катализатора для синтеза аммиака было исследовано около 20 тыс. различных веществ [1, 2]. В 1973 г. число известных органических соединений оценивалось в 6 млн. Ежегодно только в нашей стране синтезируется более 40 тыс. новых химических соединений. Таким образом, разработка научно обоснованных целенаправленных стратегий поиска катализаторов представляет актуальную проблему современного катализа. Актуальность проблемы подтверждается еще и тем, что коло 90% промышленных химических и нефтехимических производств ведется с применением катализаторов. [c.56]

    Механизм окислительно-восстановительных реакций. В настоящее время многие исследователи весьма скептически относятся к идеям о связи каталитической активности с коллективными свойствами электронов твердого тела (см., например, [23]) и вновь склоняются к чисто химическим концепциям, близким к теории промежуточных соединений. Однако в рамках этих концепций, как ука- швалось в самом начале этой книги, нельзя объяснить многие факты и наиболее фундаментальный из них — явление промотирования и модифицирования без образования новой фазы. Поэтому более вероятным является широкая вариация механизмов катализа от реакций, связанных, главным образом, с коллективными свойствами электронов в твердом теле, до превращений, практически идентичных с объемными гомогенными реакциями. Рассмотрим общий подход к явлениям катализа на полупроводниках на примере наиболее типичных для них окислительно-восстановительных превращений. Для большей конкретности будет рассмотрен случай окисления органических соединений. [c.26]


    О роли такого механизма реакции можно также судить по специфическому действию азотсодержащих соединений на каталитические свойства алюмоплатинового катализатора [17]. Органические соединения азота в условиях риформинга реагируют с образованием аммиака. Адсорбируясь на кислотных центрах и блокируя их, аммиак подавляет все реакция, протекающие с участием кислотных центров катализатора, в том числе и реакции дегидроциклизации парафинов. Так, добавление к -нонану диэтиламина (0,2% в пересчете на азот) приводит к снижению степени превращения нонана в ароматические углеводороды с 63 до 24%. При этом дегидрирующая активность катализатора полностью сохраняется, что подтверждено испытанием катализатора в реакции дегидрирования метилциклогексана. Следовательно, при отравлении катализатора аммиаком дезактивируется только его кислотная функция, что и обусловливает резкое снижение активности катализатора в реакции дегидроциклизации парафинов. [c.38]

    Каталитически активные органические соединения [c.247]

    Под органическими катализаторами в дальнейшем мы будем понимать лишь каталитически активные органические соединения известного строения, этим самым отличая их от фер- [c.10]

    В литературе описано сравнительно небольшое число реанций, в которых органическое соединение является катализатором (табл. 62). .Причины каталитической активности органических соединений не всегда ясны. [c.164]

    Стирол Полимер Ион-радикальный комплекс щелочного металла с сажей в ТГФ. Каталитическая активность растет в ряду К > Ыа > [69] Ы-органическое соединение в ТГФ. Активность органических соединений лития уменьшается в ряду алкил > бензил > аллил > > фенил > винил > трифенилметил 70]. См. также [71—73] [c.10]

    Каталитическая дегидрогенизация органических соединений представляет систему реакций, обратных по направлению реакциям гидрогенизации. Катализаторами реакций дегидрогенизации являются поэтому в основном те же металлы УТП группы периодической системы и медь, а также окислы и сульфиды металлов, которые катализируют реакции гидрогенизации. Ввиду того что дегидрогенизация происходит при более высоких температурах, чем гидрирование, катализаторы для нее приготовляются так, чтобы они были активными при температурах до 400— 500° С. Смещение обратимого процесса в сторону дегидрогенизации осуществляется изменением условий, влияющих на динамическое равновесие  [c.224]

    При рассмотрении каталитических превращений органических соединений, когда число термодинамически допустимых продуктов реакции оказывается почти необозримым, избирательное действие катализатора выступает на первый план и становится не менее важной его характеристикой, чем активность. [c.5]

    Указанный тип интерфейса обладает целым рядом преимуществ эффективность разделения и характеристики удерживания остаются неизменными имеется возможность для быстрой и несложной смены стеклянных капиллярных колонок высокая надежность и слабая подверженность внешним воздействиям. Однако, как вскоре выяснилось, использование капилляров из платины для дросселирования газового потока имеет свои теневые стороны. В работе [98] было установлено, что внутренняя поверхность капилляров из платины и других благородных металлов обладает заметной каталитической активностью, сильно зависящей от условий проведения анализа, в результате чего пики активных органических соединений мо- [c.306]

    Избыток водорода не только предотвращает протекание реакции диспропорционирования с выделением углерода, но и затормаживает деструкцию метана и позволяет поддерживать активность катализатора риформинга метана на определенном уровне за счет более мягкого режима его работы. На некоторых установках производства водорода каталитическое превращение органических соединений серы осуществляется на железооксидном катализаторе марки 481-Си. Свежий катализатор, состоящий на 80-86,5% из неактивной фазы РезОз, не работает до тех пор, пока РегОз не будет переведен в его активную [c.13]

    Среди различных окислов металлов, применяющихся для полимеризации олефинов, большой практический интерес представляет окись хрома. Окись хрома как катализатор различных органических реакций (ароматизации, дегидрогенизации, изомеризации и др.) известна уже с давних пор и ее каталитические свойства в этих реакциях достаточно хорошо изучены. Каталитическая активность кислородных соединений хрома объясняется легкостью перехода хрома из одного валентного состояния в другое, способностью быть как донором, так и акцептором электронов. Особенно хорошо изучена окись хрома в реакции ароматизации и изомеризации парафинов. [c.24]

    В этой работе экспериментально изучено влияние молекулярного кислорода, перекисей (органических и неорганических), солей серебра, меди и других сокатализаторов на каталитическую активность металлоорганических соединений бора, кадмия, цинка и алюминия. Показано, что поведение кислородных соединений связано с природой центрального атома металлоорганического соединения. В большей степени ускоряющий эффект наблюдался при полимеризации, инициируемой триэтилбором. [c.66]


    Аналогичные результаты были получены и с синтетическим алюмосиликатным катализатором. В результате этих работ можно считать установленным, что хотя природные активные глины и оказывают влияние на оптические свойства органических соединений или нефтей, но все же эти соединения остаются оптически деятельными. Таким образом, возражение, которое могло быть сделано в том отношении, что нефть, которую мы находим в настоящее время, оптически активна, тогда как находящиеся поблизости катализаторы должны были бы сделать ее оптически недеятельной,— отпадает. Показано, что в результате каталитических превращений над глинами из оптически активных органических соединений могут образоваться оптически активные углеводороды, возможно, встречающиеся в нефтях. Все вышесказанное еще бо.льше утверждает нас в мнении, что образование нефти происходит в результате превращения под [c.404]

    Однако при рассмотрении каталитических превращений органических соединений, когда число термодинамически допустимых продуктов реакции становится почти необозримым, избирательность действия катализатора выступает на первый план и часто становится даже более важной характеристикой катализатора, чем его активность. [c.11]

    Витаминами называют низкомолекулярные биологически активные органические соединения, обеспечивающие нормальное течение биохимических и физиологических процессов в организме и влияющие на обмен веществ. Витамины, как правило, синтезируются в растениях и являются незаменимыми продуктами питания животных, так как последние обычно не способны синтезировать их сами. Отсутствие витаминов в пище вызывает глубокие нарушения в процессе обмена веществ, ведущие к тяжелым заболеваниям и даже гибели. Витамины являются составной частью пищевых продуктов, но, в отличие от белков, углеводов и жиров, их требуется очень малые количества. Витамины выполняют каталитические функции и в большинстве случаев являются коферментами разнообразных ферментов. [c.159]

    Различная каталитическая активность азотсодержащих соединений (третичных аминов и солей четвертичных аммониевых оснований) проявляется в реакции межфазной поликонденсации фосгена с бисфенолом (табл. 1.14) [144]. Авторы считают, что эффективность катализатора в данном случае определяется растворимостью его комплекса с фосгеном в органической фазе и химической устойчивостью катализатора по отношению к фосгену. Наиболее активные катализаторы (1, 2, 3 в табл. 1.14) не разрушаются фосгеном и образуют с ним комплексы, растворимые в органической фазе (метиленхлориде). Менее активные катализаторы либо образуют с фосгеном нерастворимые комплексы (4,8 в табл. 1.14), либо разлагаются фосгеном (5, 6, 7 в табл. 1.14). [c.67]

    По природе активные угли принадлежат к группе графитовых тел. Для их производства используются углесодержащие материалы растительного происхождения, ископаемые каменные угли, каменноугольные полукоксы и др. Существуют два основных способа получения активных углей парогазовый метод активирования (процесс частичного выжигания углеродистых соединений из угля-сырца и окисления самого углерода за счет кислорода воздуха, пара и углекислого газа) и активирование углей неорганическими добавками (термическое разложение органического материала угля-сырца в присутствии неорганических добавок). В зависимости от способа и условий получения активные угли могут резко отличаться природой поверхности, которая в свою очередь может меняться при хранении в присутствии кислорода воздуха и воды. Активный уголь обладает каталитической активностью в ряде химических реакций окисления, галогенирования, дегидрохлорирования, дегидратации, полимеризации и др. [c.390]

    Хорошо известно, что органические соединения, особенно неполярные, могут абсорбироваться на поверхности или внутри мицелл. Это приводит к увеличению их растворимости в водных растворах и часто к изменению химической активности. В то же время именно мицеллы, а не индивидуальные молекулы ответственны за изменение скорости органических реакций в водных растворах, содержащих ПАБ. Следовательно, удачный выбор поверхностно-активного вещества может способствовать увеличению скорости в 5—1000 раз по сравнению со скоростью реакции, протекающей в его отсутствие. В зависимости от типа мицелл создается повышенная концентрация ионов Н+ или 0Н в слое Штерна, что и обусловливает увеличение скорости реакции. Другие основные или нуклеофильные группы в мицелле также должны оказывать каталитическое действие. Гораздо более слабые взаимодействия между мицеллой и противоионами существуют в более широком слое Гуи — Чепмена, ширина которого (от поверхности мицеллы) составляет несколько сотен ангстрем в этом слое содержание ионов меняется плавно( плавный градиент ионов). [c.284]

    Можно утверждать, что без катализа вообще была бы невозможна жизнь. Достаточно сказать, что лежащий в основе жизнедеятельности процесс ассимиляции двуокиси углерода хлорофиллом растений является фотохимическим и каталитическим процессом. Простейшие органические вещества, полученные в результате ассимиляции, претерпевают затем ряд сложных превращений. В химические функции живых клеток входит разложение и синтез белка, жиров, углеводов, синтез различных, часто весьма сложных молекул. Таким образом, клетка является своеобразной и весьма совершенной химической лабораторией, а если учесть, что все эти процессы каталитические — лабораторией каталитической. Катализаторами биологических процессов являются особые вещества —ферменты. Если сравнивать известные нам неорганические катализаторы с ферментами, то прежде всего поражает колоссальная каталитическая активность последних. Так, 1 моль фермента алкогольдегидрогеназа в 1 сек при комнатной температуре превращает 720 моль спирта в уксусный альдегид, в то время как промышленные катализаторы того же процесса (в частности, мeдь)J при 200° С в 1 сек превращают не больше 0,1 — 1 моль на один грамм-атом катализатора. Или, например, 1 моль фермента каталазы при 0°С разлагает в одну секунду 200 000 моль перекиси водорода. Наиболее же активные неорганические катализаторы (платиновая чернь) при 20° С разлагают 10—80 моль перекиси в 1 сек на одном грамм-атоме катализатора. Приведенные примеры показывают, что природные биологические катализаторы во много раз превосходят по активности синтетические неорганические катализаторы. Высокая специфичность и направленность действия, а также способность перерабатывать огромное количество молекул субстрата за короткое время при температуре существования живого организма и позволяет ферментам в достаточном количестве давать необходимые для жизнедеятельности соединения или уничтожать накапливающиеся в процессе жизнедеятельности бесполезные, а иногда и вредные продукты. [c.274]

    Цеолитные катализаторы в различных поливалентных катионных (или декатионированных) формах используют для проведения реакций органического и неорганического цикла крекинг, гидрокрекинг, изомеризация, алкилирование, гидрирование, дегидрирование, окисление и т. д. [209—214]. В некоторых случаях они проявляют высокую активность без добавок промоторов, а в других— при нанесении на них активных компонентов. Цеолитные катализаторы термически стабильны, устойчивы по отношению к таким контактным ядам, как сернистые и азотсодержащие соединения, металлы, не вызывают коррозии аппаратуры. Развитая поверхность (до 800 м /г), способность к катионообмену и высокая механическая прочность цеолитов позволяют использовать их в качестве носителей каталитически активной массы.  [c.171]

    Отравление катализатора может быть обратимым, когда контактные яды снижают активность катализатора временно, пока они находятся в зоне катализа, и необратимым, когда активность катализатора не восстанавливается после удаления контактных ядов из зоны катализа. Контактные яды могут содержаться в реагентах, поступающих на каталитический процесс, а также образовываться в качестве побочных продуктов в самом процессе. Устойчивость к контактным ядам является важнейшим свойством промышленных катализаторов. Для удлинения срока службы контактных масс в химико-технологических процессах предусматривается стадия тщательной очистки реагентов от вредных примесей и операция регенерирования катализатора (например, выжигание высокоуглеродистой полимерной пленки, обволакивающей зерна катализатора, в процессах каталитического крекинга, нефтепродуктов, изомеризации и дегидрирования органических соединений). [c.132]

    Многие органические соединения при нагревании в присутствии катализаторов способны выделять водород, превращаясь при этом в ненасыщенные соединения. Такой процесс называют дегидрированием. В силу обратимости каталитических реакций он противоположен, реакциям гидрирования. В зависимости от условий опыта между гидрированием и дегидрированием существует динамическое равновесие, смещению которого способствуют различные факторы в первую очередь температура и давление. Экзотермические реак ции гидрирования протекают при сравнительно низких температурах повышение давления сказывается положительно. Дегидрирование связанное с поглощением пепла (эндотермическая реакция), уско ряется при более высоких температурах, повышенные давления тормозят процесс. Для дегидрирования пригодны обычные гидрирующие катализаторы, но восстановленные при более высоких температурах. Установлено, что гидрирующие катализаторы (N1, Со, Си) можно превратить в активные дегидрирующие путем дезактивирующих добавок, что позволяет им быть активными при более высоких температурах (до 400—500°). [c.251]

    Интенсивно разрабатываются методы этерификации в присутствии амфо-терных каталитических систем, представляющих собой осажденные на носитель гидраты окислов алюминия, титана и олова, соли титана, олова, циркония и карбоновых кислот или органические соединения титана. Наибольшую каталитическую активность обнаруживают тетраалкилтитанаты и тетраалкилцирконаты. Амфотерные катализаторы частично или полностью растворимы в реакционной массе и легко удаляются из нее осаждением, гидролизом, обработкой сорбента ш или простой фильтрацией. Этернфикация в их присутствии протекает при более высокой температуре (160—200 °С) и требует большего избытка спирта (40% и выше), чем при использовании кислотного катализатора. [c.238]

    Ускорение процессов гидролиза различных органических соединений добавками кислот или щелочей явилось предметом длительных и тщательных исследований. Было установлено, что скорость гидролиза снижается с уменьшением степени диссоциации добавляемых кислот. В последнее время получен ряд доказательств того, что в гомогенных жидких системах недиссоциированная молекула вещества, действующего каталитически, обладает определенной каталитической активностью. Чем сильнее каталитическое действие кислоты, тем интенсивнее и каталитическая способность ее недиссоциированных молекул по сравнению с ионами. Если скорость реакции представляет собой сумму скоростей, определяемых активностью молекулы и иона, действующих пропорционально их концентрации, то константа скорости реакции К определится уравнением [c.547]

    Изучалась каталитическая активность органических соединений, полученных из дифенилртути и галогенидов ванадия Указывается, что ряд соединений образуется при восстановлении тетрагалогенида ванадия в присутствии ароматических соединений при отсутствии воздуха и влаги. Среди соединений, приводимых в качестве примеров, дибензолванадийдихлорид, сохраняющий устойчивость в водных растворах. Соединение используется для нанесения металла с целью катализа на соответствующих носителях, создания металлических проводников на стекле, стеклянных покрытиях и смолах, а также получения металлического зеркала . [c.130]

    Как уже упоминалось, очень важным фактором резкого увеличения каталитической активности серусодержащих соединений является присутствие в растворе ионов кобальта. Волна восстановления Со(П) предшествует каталитическому выделению водорода, поэтому некоторые исследователи [732, 734] предполагали, что каталитически активные центры образуются при адсорбции органического катализатора на металлическом кобальте, выделившемся на ртутной поверхности. М. Бржезина [806] опроверг этот взгляд, показав, что предварительный электролиз раствора на неподвижном ртутном катоде при потенциале, при котором разряжается Со(П), но еще нет каталитического выделе- ния водорода, т. е. накопление металлического кобальта на электроде, не влияет на снимаемую затем каталитическую волну. Следовательно, катализатором служит комплекс иона кобальта с органической молекулой. [c.234]

    Как уже отмечалось, каталитическая активность органических катализаторов обусловлена наличием у них неподеленной пары электронов (у атомов азота, серы, фосфора, кислорода, мышьяка) и способностью присоединять протон с образованием ониевых соединений. Поэтому каталитические волны наблюдаются в растворах аминов (но не тетразамещенных ), тиолов и сульфидов, фосфинов [780, 833], арсинов [834—836]. Недавно Э. Кноблох [736, 837] подробно исследовал каталитические волны водорода, вызываемые оксониевыми соединениями — производными хро-мона. С. И. Жданов, М. К. Полиевктов и А. А. Поздеева [838, 839] описали оксониевые каталитические волны, вызываемые дифенилциклопропеноном в кислых растворах. [c.247]

    В катализе разделение реакций на наралле.льпыеи последовательные не мон ет быть строгим но нескольким причинам а) Часто встречаются процессы с явным наложением параллельных реакций на последовательные. Это, в частности, четко показано с помощью изотопной метки по углероду для каталитического окисления органических соединений кислородом [17] (рис. 1). б) Однако и в тех случаях, когда различные стабильные продукты, как, например, различные кислородные органические соединения, поддающиеся выделению, образуются практически независимо и параллельно, оиитез каждого из этих продуктов на любом катализаторе проходит через ряд последовательных скрытых этапов, в большинстве которых участвуют или образуются лабильные активные вещества [18]. Новые физические методы исследования быстро расширяют наши знания о характере и свойствах этих иродуктов. В гетерогенном катализе можно ожидать уменьшения числа независимых параллельных процессов при повышении однородности поверхности в микрохимическом и энергетическом отношении. При прочих равных условиях в гомогенном катализе параллельные независимые реакции должны быть меньше распространены, чем в гетерогенном. [c.19]

    Применение в качестве комплексообразующих агентов наряду со Sn U оловоорганических хлоридов представляло интерес с точки зрения выяснения влияния органических радикалов на каталитическую активность подобных соединений. [c.111]

    По мнению А. В. Топчиева, полимеризация на катализаторах Циглера включает алкилирование четыреххлористого титана алюминийоргани-ческими соединениями с образованием каталитически активных органических производных титана [31]. Для выяснения роли соединений титана в комплексных катализаторах Г. А. Разуваев при полимеризации пропилена заменил галогениды другими соединениями титана [32]. Восстанавливающую способность алюминийорганических соединений по отно- [c.114]

    Термическая десорбция с активной поверхности хемосорбиро-ванных органических соединений (масс-спектральная термическая десорбция, МСТД) позволяет наблюдать превращения органических соединений на поверхности катализатора. В условиях глубокого вакуума и высокой скорости отвода десорбируемых веществ (150 л/мин) от поверхности катализатора исключается вероятность реадсорбции и протекания реакций в газовой фазе, что позволяет изучать элементарные стадии химических реакций и, следовательно, механизмы каталитических превращений органических соединений. [c.156]

    Процесс сухой очнстки от сероводорода активным углем основан на окислении сероводорода до элементарной серы кислородом на поверхности активного угля. Образующаяся при очистке элементарная сера отлагается в порах угля по мере заполнения поверхности угля серой процесс очистки замедляется и прекращается. Для восстановления поглотительной способности угля его промывают раствором сернистого аммония. После промывки и пропарки активный уголь вновь пригоден для очистки газа. Каталитическая очистка газа протекает в две ступени на первой ступени на катализаторе при подаче пара или водорода органические соединения серы превращаются в сероводород, а на второй ступени сероводород удаляют из газа. [c.47]

    Наиболее подробно изучено каталитическое действие я-аллильных комплексов никеля. Их стереоспецифичность определяется природой галогена, связанного с никелем иодиды приводят к транс-структурам, а хлориды способствуют образованию цис-звеньев [48]. Активность п-аллилникельгалогенидов резко возрастает при введении в систему неорганических или органических электроноакцепторов [49, 50]. Катализаторы, образующиеся при взаимодействии п-аллильных комплексов никеля с такими соединениями, как галогензамещенные хиноны, альдегиды, кетоны, кислоты и их соли, обладают высокой каталитической активностью [c.183]

    В заключение отметим, что для нестационарного способа обезвреживания газовых выбросов промышленных предприятий целесообразно использовать окисные катализаторы. Классификация катализаторов глубокого окисления органических соединений и оксида углерода, их важнейшие характеристики приведены в ряде обзорных работ [12—14], Катализаторы на основе металлов платиновой группы являются наиболее активными и универсальными. Однако благородные металлы имеют высокую стоимость. В этом плане перспективны катализаторы на основе оксидов или солей переходных металлов (меди, кобальта, хрома, никеля, марганца), которые, несколько уступая по своей активности катализаторам, содержащим благородные металлы, значительно дешевле и доступнее. В научной и патентной литературе описаны разнообразные каталитические системы, применяемые для обезвреживания токсичных выбросов. Перечислим здесь лишь несколько марок окисных катализаторов, вы-1гускаемых в СССР. [c.174]

    Замена и регенерация катализатора легко осуществляется при применении аппаратов КС. Это является решающим преимуществом его в процессах крекинга, дегидрирования и в ряде других производств органической химии (см. главы VI и Vil), в которых требуется циркуляция катализатора с целью его регенерации, так как зерна его покрываются пленкой углеродистых соединений и теряют каталитическую активность в течение нескольких минут. В этом случае используется текучесть псевдоожиженного (кршящего) слоя, позволяющая непрерывно или периодически частично или полностью выпускать катализатор из слоя на регенерацию и вновь подавать его в реактор. Для такой работы, конечно, необходимо иметь высоко прочный катализатор, к которому не стремятся в случае неподвижного слоя. [c.104]

    Под действием каталитических ядов в процессе эксплуатации катализаторы могут частично или полностью потерять свою активность. В ряде случаев, если не полностью, то частично возможно восстановить его активность после того, как прекратилось действие каталитического яда. Некоторые вещества отравляют катализатор необратимо. К каталитическим ядам следует отнести сероводород и органические соединения серы, соединения мышьяка, галогенов, фосфора, свинца и меди. Сырье (углеводороды) и водяной пар, поданные отдельно или нри малых концентрациях одного из компонентов, также можно рассдштривать как каталитические яды. [c.84]

    С появлением парового риформинга, осуществляемого на чувствительных к отравлению никелевых катализаторах, производство синтез-газа, почти свободного от ядов, становится все более экономически привлекательным. В результате этого увеличивается число каталитических веществ, пригодных для использования в производстве синтез-газа. В частности, появляется возможность использования потенциальных достоинств меди. Доводы в пользу меди, приведенные в гл. 1, делают понятным выбор ее в качестве катализатора реакции конверсии СО считается, что она обладает активностью и селективностью при значительно более низких температурах, чем обычные катализаторы на основе Рёд04. В литературе описана длительная история изучения каталитических свойств меди, но уже ранние исследователи наблюдали быстрое падение активности, обусловленное не только ее чувствительностью к ядам, но также и быстрым уменьшением поверхности. Композиции меди с окисью цинка использовались в течение многих лет в качестве катализаторов гидрирования и дегидрирования органических соединений, и эти катали- [c.132]

    Платиновые катализаторы весьма чувствительны к каталитическим ядам, содержащимся в аммиаке и воздухе, образующим аммиачно-воздушную смесь (АмВС). Фосфористый водород вызывает его необратимое, а ацетилен, сероводород и органические соединения серы обратимое отравление. Так как вследствие этого активность катализатора снижается, его периодически регенерируют промывкой соляной или азотной кислотой. [c.215]

    Представление о малоактивных радикалах как причине замедления крекинга в соответствующих условиях развивалось не только в наших работах 122, 39, 46, 681, но и в других исследованиях [71, 721. В этих работах рассмотрено влияние окиси азота на термический распад алканов и других орга- нических соединений. При действии N0 наблюдается инверсия каталитических свойств малые добавки замедляют, а большие ускоряют распад органических соединений. Частица N0 имеет нечетное число электронов, обладает парамагнитными свойствами и является радикальной молекулой. Как ардикал N0 способна захватывать активные радикалы (Н, СНз и др.) путем рекомбинации двух свободных валентностей, и с этим связано тормозящее влияние N0 на распад алканов. [c.36]


Смотреть страницы где упоминается термин Каталитически активные органические соединения: [c.234]    [c.10]    [c.422]    [c.70]    [c.17]    [c.378]    [c.189]    [c.76]   
Смотреть главы в:

Каталитические и кинетические волны в полярографии -> Каталитически активные органические соединения




ПОИСК





Смотрите так же термины и статьи:

Активность каталитическая



© 2024 chem21.info Реклама на сайте