Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидроксамовая кислота определение воды

    Для определения следовых количеств спиртов можно сначала подвергнуть их ацетилированию, а затем использовать метод с гидроксаматом железа(1П), применяющийся в определении эфиров (гл. 3, разд. I, В) [6]. При использовании такого метода образец, содержащий спирт, сначала ацетилируют до эфира уксусной кислоты. Ацетилирование осуществляют в мягких условиях в пиридине с кислотным катализатором в присутствии буфера при комнатной температуре. После ацетилирования избыток ангидрида гидролизуют минимальным количеством воды при комнатной температуре. Полученный ацетат с помощью гидроксиламина превращают в анион соответствующей гидроксамовой кислоты в основном растворе, затем этот раствор подкисляют и добавляют в него перхлорат железа(111) для образования пурпурного хелата железа(П1) [7]. Ниже описан метод Гутникова и Схенка [6]. [c.21]


    Было исследовано также влияние растворителя на колориметрическое определение сложных эфиров. Поскольку нередко необходимы или желательны другие растворители, помимо этанола были исследованы некоторые из них (рис. 3.3). Растворы реактива, содержащего Ре +, и пробы сложного эфира в изопропаноле оказались во всех отношениях сравнимы с этанольными. Можно растворять пробу в бензоле, оставляя все прочие реактивы без изменения. Диоксан при соответствующей очистке мог бы, вероятно, оказаться также подходящим растворителем. Успешно применяли смеси хлористого метилена с этанолом и петролейный эфир. Томпсон [14] пользовался диэтиловым эфиром после весьма тщательной его очистки. По-видимому, при соответствующей очистке можно применять в качестве растворителей и другие простые эфиры и спирты. Можно анализировать и водные растворы сложных эфиров, однако в этом случае наблюдается некоторое ослабление интенсивности окраски, вероятно, из-за конкурирующих взаимодействий воды и гидроксамовой кислоты с ионами Ре +. Для построения калибровочных кривых всегда необходимо пользоваться тем же растворителем, что и при анализе пробы. [c.146]

    Кислоты, большинство амидов и нитрилы не мешают определению сложных эфиров описанным колориметрическим методом. Условия гидроксиламинолиза недостаточно жестки и реакция с амидами и нитрилами в этих условиях не протекает. Наоборот, хлорангидриды активно участвуют в обоих реакциях. Карбонильные соединения в высоких концентрациях также реагируют с гидроксиламином. Переходные металлы, например медь, никель и ванадий, реагируют с гидроксамовыми кислотами, образуя окрашенные комплексы, которые мешают определению. Возможно, что ванадий вообще успешно может заменить железо в этом определении [6]. Ионы, комплексно связывающие Ре +, например хлорид, тартрат, ацетат, а также вода могут оказывать значительное влияние на интенсивность окраски при определении как сложных эфиров, так и ангидридов. [c.148]

    Для количественного определения липидов применялись почти все методы количественного анализа результатов ТСХ. Виок и Холмен [257] оценивали содержание сложных эфиров колориметрически. После разделения соединений пятна экстрагировали диэтиловым эфиром и переводили соединения в гидроксамовые кислоты. С этой целью к каждой экстрагированной пробе добавляли по 0,1 мл 2,5 %-ного раствора гидроксида натрия и 0,1 мл 2,5 %-ного раствора гидрохлорида гидроксиламина (оба раствора в 95 %-ном этаноле), нагревали на водяной бане при 65—70°С до полного испарения растворителя, охлаждали, добавляли 5 мл обнаруживающего реактива —перхлората железа. В результате образовывались окрашенные комплексы. Через 30 мин измеряли оптическую плотность на спектрофотометре при длине волны 520 нм. Обнаруживающий реагент можно приготовить следующим образом [257] сначала исходный раствор, содержащий 5,0 г перхлората железа (не желтого) в 10 мл 70 %-ной хлорной кислоты плюс 10 мл дистиллированной воды, разбавляют до объема 100 мл холодным абсолютным этанолом. Далее 4 мл этого раствора плюс 3 мл 70 %-ной хлорной кислоты разбавляют до 100 мл охлажденным абсолютным этанолом и сразу же после этого используют реактив. [c.98]


    Азотистые соединения включают амиды, анилиды, амины, алкалоиды, протеины, аминокислоты (рассмютрены вместе с кислотами), карбаматы или уретаны (рассмотрены со сложными эфирами), лактамы, циангидрины, нитрилы, нитро-, нитрозо- и азосоединения, азолы, оксимы, гидразины, гидроксамовые кислоты, аминоспирты, изоцианаты, пурины или диуреиды, амидины и производные циановой кислоты. Число методов, применимых для определения воды в органических азотистых соединениях, весьма ограниченно. Иногда применимы химические методы, основанные на гидролизе хлорангидридов или ангидридов кислот. Однако они непригодны для перечисленных веществ (особенно для аминов и амидов), которые вступают в реакцию аци-лирования или в присутствии которых ацидиметрическое определение конечной точки затруднено. (Для всех аминов, за исключением низших, может быть применен метод Смита и Брайанта [26] с хлористым ацетилом, характеризующийся сравнительно мягкими условиями.) Для специального случая с анилином описаны методы, основанные на появлении точки помутнения [45-47]. [c.127]

    Известны другие методы объемного определения органических кислот. Так, например, при взаимодействии кислот с мета-иолом в присутствии катализатора образуется вода, которую определяют методом Фишера. Для колориметрического определения карбоновых кислот можно использовать реакцию с гидроксиламином образующаяся при этом гидроксамовая кислота дает с ионами железа(1И) комплекс красного цвета. Солп жирных кислот также можно определить спектрофотометрпческп, используя в качестве реагента пинацианолхлорид [181]. [c.474]

    Эфиры карбоновых кислот являются относительно устойчивыми соединениями, и поэтому для них нет прямых методов определения. Простейшим методом, позволяющим превратить их в анализируемую форму, является предварительное омыление при нагревании со щелочами в воде, спирте или диэтиленгликоле, в результате чего образуются соответствующая соль карбоновой кислоты и спирт. При проведении омыления известным избытком щелочи последний можно оттитровать кислотой в присутствии соли. Используя этот метод, можно определять эфирное число , или число омыления , эфиров, которое используют в промышленности для характеристики жиров и воска. Эфирное число равно количеству гидроксида калия (мг), необходимому для омыления всех эфиров, которые содержатся в 1 г анализируемого вещества. Определение числа омыления жиров, воска и летучих масел имеет большое значение для промышленного анализа. При омылении эфиров в присутствии феиилгидразипа альдегиды не мешают определению, поскольку образующиеся гидразо-пы устойчивы к действию щелочей. При использовании спектрофотометрического метода, основанного на определении гпдрО ксамовых кислот, эфир переводят в гидроксамовую кислоту в щелочном растворе  [c.476]


Смотреть страницы где упоминается термин Гидроксамовая кислота определение воды: [c.404]    [c.115]    [c.358]    [c.70]    [c.138]    [c.106]    [c.116]    [c.618]    [c.203]    [c.445]    [c.216]    [c.128]    [c.216]    [c.46]   
Акваметрия (1952) -- [ c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Гидроксамовые кислоты

Кислоты, определение воды



© 2025 chem21.info Реклама на сайте