Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транскрипция, контроль

    Развитие многоклеточных эукариотических организмов основано на способности клеток передавать в ряду поколений активное или, наоборот, репрессированное состояние гена. Наследование состояния гена приводит в конечном итоге к образованию дифференцированной ткани, состоящей из клеток, в которых лишь небольшая часть генов активирована на фоне репрессии основной части генома. Исследование молекулярных механизмов, обеспечивающих наследование активного или неактивного состояния гена в ряду клеточных поколений, представляется чрезвычайно важным. По-видимому, в основе этих механизмов лежат не только программированные взаимодействия белков и ДНК, обеспечивающие наследуемую локальную организацию хроматина, но и процессы метилирования ДНК. Метилирование можно расс.матривать как особый механизм контроля транскрипции, существующий наряду с механизмами, основанными на взаимодействиях между цис-действую-щими регуляторными элементами и факторами транскрипции. [c.218]


    Синтез многих ферментов в клетке, по-видимому, почти все время подавлен. Появление специфических ферментов в тот или иной момент времени в организме или в определенной дифференцированной ткани происходит в результате дерепрессии, вызываемой накоплением специфических метаболитов или другими, пока неизвестными факторами. В эукариотических клетках контроль за синтезом ферментов может осуществляться как на уровне транскрипции, так и на уровне трансляции. [c.66]

    Репрессия может не только частично сниматься под действием индуктора, но и усиливаться в присутствии конечного продукта метаболической цепи. В некоторых случаях подобная репрессия по типу отрицательной обратной связи также опосредуется аллостерическим изменением молекулы белка — репрессора. У эукариот контроль по типу отрицательной обратной связи может реализоваться, по-видимому, и на уровне транскрипции, и на уровне трансляции, как показано на рис. 6-15. [c.66]

    В хромосоме нормальной клетки существует значительно больше ДНК, чем когда-либо используется для транскрипции. Это, вероятно, обусловлено двумя уровнями контроля. Надо полагать, что хромосомные белки разрешают транскрипцию некоторого количества ДНК, но не всего запаса. Эта ситуация будет, вероятно, неизменной для всех клеток данного вида. С другой стороны, в клетках, выполняющих разные функции внутри вида, а также внутри той же самой клетки, но на разных стадиях ее жизненного цикла или в соответствии с изменениями в окружающей ее среде, используются различные гены. Этот процесс рассматривается как генная регуляция и, возможно, он осуществляется в результате контроля за доступом РНК-полимеразы к хромосомной ДНК. [c.203]

    Описанный способ контроля и регуляции биосинтеза белка у прокариот еще не может обеспечить регуляторные нужды клетки. Белки, кодируемые одним и тем же опероном, могут требоваться в разных количествах и в разное время. Для понимания соответствующих регуляторных явлений необходимо детальное рассмотрение процесса транскрипции. Рационально рассматривать начало синтеза РНК на ДНК (инициацию) и про- [c.288]

Рис. 3.19. Транскрипция в бактериальной клетке. А. Структурные гены (А, В, С и О) оперона находятся под транскрипционным контролем оператора (о) и промотора (р). РНК-полимераза связывается с участками, находящимися на расстоянии 10 (—10) и 35 (—35) пар оснований от сайта инициации транскрипции (+1). 1 — Стоп-сигнал, ответственный за остановку транскрипции, а, Р, у и 5 — белки, продукты генов А, В, С, О. Б. То же, что и на рис. А, но показано связывание РНК-полимеразы с промоторной областью. Рис. 3.19. Транскрипция в <a href="/info/32980">бактериальной клетке</a>. А. <a href="/info/200539">Структурные гены</a> (А, В, С и О) оперона находятся под транскрипционным контролем оператора (о) и промотора (р). РНК-<a href="/info/33441">полимераза</a> связывается с участками, находящимися на расстоянии 10 (—10) и 35 (—35) пар оснований от сайта <a href="/info/32953">инициации транскрипции</a> (+1). 1 — <a href="/info/1281376">Стоп</a>-сигнал, ответственный за остановку транскрипции, а, Р, у и 5 — белки, <a href="/info/91036">продукты генов</a> А, В, С, О. Б. То же, что и на рис. А, но показано связывание РНК-полимеразы с промоторной областью.

    Итак, регуляция транскрипции у эукариот -это очень сложный процесс. Структурный ген может иметь множество регуляторных элементов, которые активируются специфическими сигналами в клетках разного типа в разное время клеточного цикла. Однако некоторые структурные гены находятся под контролем уникального фактора транскрипции. Специфические белки могут взаимодействовать с определенными регуляторными элементами и блокировать транскрипцию или связываться со всем транскрипционным комплексом еще до инициации транскрипции или во время элонгации. [c.47]

    Для эффективной экспрессии любого гена совершенно необходимо наличие сильного регулируемого промотора, расположенного перед данным геном. Такой промотор имеет высокое сродство к РНК-полимеразе, поэтому прилегающие к нему последовательности эффективно (с высокой частотой) транскрибируются. Регулируемость промотора позволяет клетке (и исследователю) осуществлять строгий контроль транскрипции. Для экспрессии клонированных генов широко используется промотор хорошо изученного la (лактозного)-оперона Е. соН. Однако есть и другие промоторы, обладающие полезными для контроля экспрессии свойствами. Для их идентификации перед так называемым геном-репортером, кодирующим легко регистрируемый продукт, но лишенным [c.105]

    Белок-регулятор транскрипции контроль генов 53-рРНК [c.127]

    Вместе с тем одной из реакций, находящихся под контролем фитохрома, является свертывание листьев мимозы с наступлением темноты. Весь процесс завершается через 5 мин — это время слишком мало, чтобы мог осуществляться контроль на уровне транскрипции. Данный факт, а также то обстоятельство, что какое-то количество фитохрома оказывается прочно связанным с мембранами, привели к предположению, что первичное действие фитохрома сводится к изменению свойств мембраны. Какая из форм — Pr или Pfr — ответственна за это воздействие, не вполне ясно более вероятным кандидатом на роль активной формы представляется Pfr. Согласно недавно высказанному предположению, фитохром, содержащийся в мембранах пластид, способствует высвобождению гибберелинов, находящихся внутри пластид [158а]. [c.70]

    Другой тип положительного контроля известен для арабинозного (ага) оперона (положение, соответствующее 1 мин на хромосомной карте Е. oli). В этом случае индуктор не только вызывает отщепление репрессора от операторного участка, но и превращает его в активато,р, который, подобно комплексу САР—сАМР, вызывает более эффективную инициацию транскрипции. [c.205]

    Мало кто сомневается сейчас в возможности искусственного включения генов в клетки человеческого организма, однако, как осуществляется контроль транскрипции и трансляции генов у животных, мы еще ллохо себе представляем. Дальнейшие исследования, несомненно, помогут понять природу этого контроля, и тогда, возможно, удастся успешно прибегнуть к генной хирургии . Одной из целей этого метода может явиться, в частности, обнаружение способов коррекции дефектов метаболизма, вызывающих атрофию секретирующих инсулин р-клеток поджелудочной железы при ювенильном диабете. Число больных, которым такое лечение сможет помочь, необычайно велико (дополнение П-В). [c.295]

    Сходным образом осуществляется регуляция О.в. на уровне биосинтеза ферментов. При этом субстрат или продукт р-ции регулирует активность белкового репрессора, подавляющего транскрипцию (синтез матричной РНК на ДНК-матрице) соответствующего оперона (участок ДНК, кодирующий одну молекулу матричной РНК под контролем белка-репрессора). Примером регуляции при помощи положит. прямой связи может служить в данном случае управление расщеплением лактозы. Появление в среде лактозы инактивирует у бактерии Es heri hia oli соответствующий репрессор и тем самым разрешает транскрипцию оперона, кодирующего ферменты, катализирующие расщепление лактозы. Пример регуляции при помощи отрицат. обратной связи - управление биосинтезом гистидина. Избыток гистидина активирует репрессор, ингибирующий транскрипцию оперона, кодирующего ферменты биосинтеза гистидина. Если репрессор и белки, синтез к-рых он подавляет, кодируются одним опероном, то отрицат. обратная связь осуществляется без участия внеш. модуляторов активности репрессора. Аналогичным образом осуществляется регуляция биосинтеза белка на уровне трансляции (синтез белка ка РНК-матрице). Такой механизм регуляции позволяет синтезировать белок в строгом соответствии с потребностью в нем на данном этапе существования организма. [c.317]

    РИС. 6-15. Некоторые механизмы контроля метаболических реакций. На всех приведенных в книге рисунках модуляция активности фермента аллостерическими эффекторами, а также модуляция активности генов (транскрипция и трансляция) обозначается пунктирными линиями, отходящими от соответствующего метаболита. Линии заканчиваются знаком минус в случае ингибирования идерепрессиии знаком плюс в случае активации и депрессии. Кружки соответствуют прямому действию иа ферменты, а квадратики — репрессии или индукции синтеза ферментов. (Подобная схема представлена в работе [66а].) [c.64]

    Особенности генетического контроля состоят в том, что биосинтез белка регулируется через контроль над биосинтезом мРНК, а именно процесс транскрипции находится под непосредственным контролем регуляторного гена ДНК, а контроль осуществляется опосредованно. [c.60]

    По контролю гены группируются в две четкие группы. Оперон является единицей транскрипции мРНК и может содержать один, два или несколько генов. Все они контролируются единственным промотором и выражаются в образовании единственной молекулы мРНК- Такие группы генов часто связаны с образованием продуктов, используемых для близко родственных биохимических задач. Например, десять белков, ответственных за биосинтез гистидина, сгруппированы в его оперон. В свою очередь, опероны могут быть объединены в кластеры. Кластер str-sp имеет дело примерно с 60 белками, которые все включаются в структуру рибосомы, а также с одной субъединицей РНК-полимеразы. Поскольку в настоящее время мало что известно о функции кластеров, изучение [c.203]


    Механизмы, лежащие в основе этой регуляции, пока неизвестны. Для их объяснения существует ряд гипотез. Предполагают, что контроль осуществляется на уровне транскрипции по аналогии с индукцией ферментов у бактерий и что в этом случае в клетках животных должны функционировать аналогичные репрессоры. С молекулой ДНК у эукариот связаны гистоны, поэтому считается, что именно эти белки выполняют роль репрессоров. Прямых доказательств их роли в качестве репрессоров не получено, хотя, как было показано, в клетках эукариот открыт класс регуляторных белков процесса транскрипции. Высказано предположение, что в ядре синтезируется высокомолекулярная молекула мРНК, содержащая информацию для синтеза широкого разнообразия белков, но в цитоплазму попадает только небольшая часть зрелой мРНК, а основная часть ее распадается. Неясны, однако, биологический смысл и назначение этого механизма избирательного распада и соответственно траты огромной массы молекулы мРНК. [c.540]

    Часто у бактерий белки одного метаболического пути кодируются смежными структурными генами. Нуклеотидная последовательность, в которой закодировано более одного белка, называется опероном. Обычно оперон находится под контролем единственного промотора, и при его транскрипции образуется одна длинная молекула мРНК, кодирующая несколько белков. При [c.42]

    Для транскрипции с промотора бактериофага Т7 нужна соответствующая РНК-полимераза. Чтобы можно было использовать этот промотор, ген РНК-полимеразы фага Т7 встраивают в хромосому Е. соИ в составе профага X, поместив его под контроль /ас-промотора. Затем клетки трансформируют плазмидой, содержащей ген-мишень под контролем Т7-промотора, и добавляют в среду ИПТГ. В этих условиях происходит индукция гена РНК-полимеразы Т7, синтезируется РНК-полимераза и происходят транскрипция и трансляция клонированного гена. Часто между временем индукции гена РНК-полимеразы Т7 и началом транскрипции гена- [c.108]

    Эффективность инактивации белка-репрессора и соответственно активации транскрипции зависит от соотношения между числом молекул репрессора и числом копий промотора. Если концентрация репрессора слишком велика, то транскрипция не инициируется, и наоборот, если молекул репрессора очень мало (даже при том, что их больше, чем копий промотора), то транскрипция может идти и в отсутствие индукции. Про такие промоторы говорят, что они текут . Чтобы осуществлять строгий контроль таких регулируемых систем, разработаны разные стратегии. Например, ген репрессора и соответствующий промотор помешают в две разные плазмиды, присутствующие в клетке в разном числе копий это позволяет поддерживать нужное соотношение между числом молекул репрессора и числом копий промотора. Обычно ген репрессора находится в малокопийной плазмиде, число ее копий в клетке не превышает 8, а промотор - в мультикопийной плазмиде с 30-100 копиями на клетку. Ген репрессора может быть локализован и в хромосомной ДНК, находясь в ней в единственном числе, что позволяет поддерживать низкую концентрацию репрессора. В системах, использующих /ас-промотор, можно получить /ос-репрессор в значительно большем количестве, если заменить /ас/-ген его мутантной формой /дс/ч, что приводит к уменьшению протекания промотора, т. е. к снижению уровня транскрипции клонированного гена без индуктора. [c.108]

Рис. 6.5. Клонирующий вектор pAVlO (без соблюдения масштаба). Показано положение гена устойчивости к тетрациклину (Tef), сайта рестрикции для эндонуклеазы Bglll, сайта инициации репликации (ori), промотора (р) и полилинкера (ПЛ). Встраивание клонированного гена в полилинкер ставит его под контроль промотора Тп5 (р). Стрелка указывает направление транскрипции. Рис. 6.5. <a href="/info/199908">Клонирующий вектор</a> pAVlO (без соблюдения масштаба). Показано положение <a href="/info/914088">гена устойчивости</a> к тетрациклину (Tef), <a href="/info/1325004">сайта рестрикции</a> для эндонуклеазы Bglll, сайта <a href="/info/32949">инициации репликации</a> (ori), промотора (р) и <a href="/info/1386520">полилинкера</a> (ПЛ). Встраивание <a href="/info/32984">клонированного гена</a> в <a href="/info/1386520">полилинкер</a> ставит его под контроль промотора Тп5 (р). Стрелка указывает направление транскрипции.
Рис. 7.16. Экспрессирующий вектор с двумя независимо транскрибируемыми генами. Клонированные гены (а и (3) кодируют субъединицы димерного белка (ар). Каждый ген встроен в вектор как часть отдельной единицы транскрипции и находится под контролем эукариотического промотора (р) и сигнала полиаденилирования (ра). Каждая субъединица транслируется со своей мРНК объединяясь, субъединицы образуют функциональный димерный белок (ар). Векторы содержат сайты инициации репликации, функционирующие в Е. соИ (оп ) и в клетках млекопитающих (р /сик) маркерный ген (Amp ) для отбора трансформированных клеток Е. oli, селективный маркерный ген (СМ), находящийся под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). Рис. 7.16. <a href="/info/200743">Экспрессирующий вектор</a> с двумя независимо транскрибируемыми генами. <a href="/info/32984">Клонированные гены</a> (а и (3) кодируют субъединицы димерного белка (ар). Каждый ген встроен в вектор как часть отдельной <a href="/info/1325072">единицы транскрипции</a> и находится под контролем <a href="/info/166894">эукариотического</a> промотора (р) и сигнала <a href="/info/33245">полиаденилирования</a> (ра). Каждая субъединица транслируется со своей мРНК объединяясь, субъединицы образуют функциональный димерный белок (ар). Векторы содержат сайты <a href="/info/32949">инициации репликации</a>, функционирующие в Е. соИ (оп ) и в <a href="/info/1397637">клетках млекопитающих</a> (р /сик) <a href="/info/98299">маркерный</a> ген (Amp ) для отбора трансформированных клеток Е. oli, селективный <a href="/info/98299">маркерный</a> ген (СМ), находящийся под контролем <a href="/info/166894">эукариотических</a> промотора (р) и сигнала полиаденилирования (ра).
Рис. 7.17. Двухцистронный экспрессирующий вектор. Клонированные гены (а и (3) кодируют субъединицы димерного белка (а 3). Они разделены сегментом ДНК, который после транскрипции, на уровне мРНК, играет роль внутреннего сайта связывания рибосом. Каждый ген находится под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). Трансляция мРНК начинается с 5 -конца и с внутреннего сайта (угловые стрелки). Синтезированные субъединицы объединяются с образованием функционального димерного белка. Вектор содержит сайты инициации репликации, функционирующие в Е. соИ orf) и в клетках млекопитающих (orF y, селективный маркерный ген (Amp ) для отбора трансформированных клеток Е. соИ селективный маркерный ген (СМ), находящийся под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). Рис. 7.17. Двухцистронный <a href="/info/200743">экспрессирующий вектор</a>. <a href="/info/32984">Клонированные гены</a> (а и (3) кодируют субъединицы димерного белка (а 3). Они разделены сегментом ДНК, который после транскрипции, на уровне мРНК, играет роль внутреннего <a href="/info/1413345">сайта связывания</a> рибосом. Каждый ген находится под контролем <a href="/info/166894">эукариотических</a> промотора (р) и сигнала <a href="/info/33245">полиаденилирования</a> (ра). <a href="/info/33137">Трансляция</a> мРНК начинается с 5 -конца и с внутреннего сайта (угловые стрелки). Синтезированные субъединицы объединяются с образованием функционального димерного белка. Вектор содержит сайты <a href="/info/32949">инициации репликации</a>, функционирующие в Е. соИ orf) и в <a href="/info/1397637">клетках млекопитающих</a> (orF y, селективный <a href="/info/98299">маркерный</a> ген (Amp ) для отбора трансформированных клеток Е. соИ селективный <a href="/info/98299">маркерный</a> ген (СМ), находящийся под контролем <a href="/info/166894">эукариотических</a> промотора (р) и сигнала полиаденилирования (ра).
    Новый подход, позволяющий индуцировать у организма иммунный ответ без введения антигена, основан на включении в клетки животно-го-мишени гена, кодирующего белок-антиген. В первых экспериментах такого рода Е. соН-плазмиду, содержащую клонированный ген белка-антигена, транскрипция которого находилась под контролем промотора вируса животных, конъюгировали с микрочастицами золота и бомбардировали ими клетки уха мыши. Впоследствии выяснилось, что клонированную кДНК можно вводить в клетки и с помощью внутримышечной инъекции раствора с большим количеством плазмиды, несущей соответствующую ДНК. Для этого необходимо в 10 -10" раз больше ДНК, чем при бомбардировке микрочастицами. В одном из экспериментов более чем в 75% случаев ген включался в клетки мыши, и синтезированный белок-антиген индуцировал синтез антител. Этот подход позволяет избежать очистки антигена, что требует много времени и средств, или использования для соз- [c.233]

    А, транскрипция которой находилась под контролем промотора вируса саркомы Рауса или ци-томегаловируса. Хотя уровень экспрессии гена нуклеопротеина был настолько низок, что не поддавался регистрации, через 2 нед после иммунизации в крови мышей обнаруживались антитела к нему. Выживаемость иммунизированных мышей оказалась значительно выше, чем мышей из контрольной группы (рис. 11.5). Более того, они были нечувствительны и к другому штамму вируса гриппа. Такая перекрестная защита не вырабатывается при введении традиционных противогриппозных вакцин, полученных на основе поверхностных антигенов вируса, и поэтому каждая вакцина специфична лишь к одному штамму вируса. Более того, традиционные вакцины сохраняют свою эффективность только до тех пор, пока остаются неизмененными поверхностные антигены. К сожалению, для генов поверхностных антигенов характерна высокая частота мутаций, что приводит к появлению существенно различающихся штаммов вируса. Кбровые же белки, такие как нуклепротеин, относительно стабильны и активируют иммунную систему по другому механизму, чем поверхностные антигены. [c.233]


Смотреть страницы где упоминается термин Транскрипция, контроль: [c.956]    [c.410]    [c.203]    [c.259]    [c.122]    [c.577]    [c.6]    [c.203]    [c.48]    [c.70]    [c.111]    [c.140]    [c.148]    [c.153]    [c.234]    [c.268]    [c.282]    [c.282]    [c.290]    [c.290]    [c.293]    [c.312]   
Биохимия Том 3 (1980) -- [ c.64 , c.72 , c.259 , c.295 , c.304 , c.316 ]




ПОИСК







© 2024 chem21.info Реклама на сайте