Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки конформационные состояния

    Почему происходит конформационное изменение В молекуле фермента имеется сложная сеть водородных связей. Появление отрицательного заряда на атоме кислорода тетраэдрического промежуточного соединения должно обязательно повлиять на распределение электронных плотностей внутри некоторых водородных связей, отдаленных от активного центра. Если молекула белка может существовать в нескольких энергетически эквивалентных конформациях, то возможна ситуация, когда изменение в распределении зарядов вызывает резкий переход из одного конформационного состояния в другое, причем подобный конформаци- [c.111]


    Монография посвящена рассмотрению существующих подходов к изучению принципов молекулярной структурной организации и механизма свертывания белка в нативную конформацию Книга состоит из введения и четырех частей В первой части изложена бифуркационная теория самосборки полипептидной цепи, физическая конформационная теория и метод априорного расчета пространственного строения белка по известной аминокислотной последовательности В других частях рассмотрены конформационные возможности простейших пептидов, сложных олигопептидов и белков Представлены результаты количественного анализа конформационных состояний большого числа пептидов и низкомолекулярных белков Изложен подход автора к решению обратной структурной задачи, позволяющей целенаправленно конструировать наборы искусственных аналогов, пространственное строение которых выборочно отвечает низкоэнергетическим, потенциально биологически активным конформациям природного пептида [c.4]

    Вклад различных взаимодействий в свободную энергию, энтальпию и энтропию комплексообразования различен и зависит не только от типа взаимодействия, но и от структуры лиганда в целом, а также от энергетики сопутствующих свя зыванию процессов - изменения сольватации, рХ групп белка, конформационного состояния и конформационных изменений фермента. [c.280]

    Как может связывание гормона с рецептором на наружной поверхности клеточной мембраны влиять на хим.ические процессы внутри клетки Весьма вероятно, что в некоторых случаях рецептор пронизывает мембрану насквозь и контактирует с ферментом, связанным с внутренней поверхностью мембраны Изменение конформационного состояния рецепторного белка, обусловленное связыванием гормона, мо- [c.386]

    Общая для всех исследований рассматриваемого направления особенность состоит в стремлении авторов или вообще избежать, или крайне упростить учет взаимодействий даже между двумя соседними по цепи аминокислотными остатками. При эмпирическом подходе это неизбежно, поскольку признание значительной роли в формировании структуры белка межостаточных взаимодействий и порядка расположения аминокислот в цепи равносильно отказу от поиска простых корреляций. Действительно, при огромном множестве возможных комбинаций как аминокислотных остатков в последовательности, так и конформационных состояний каждого остатка количество подлежащих рассмотрению структурных вариантов настолько велико, что для их корректной статистической обработки было бы недостаточно опытных данных о нативных структурах [c.79]


    Проведенный анализ пространственных форм основных цепей амино. кислотных остатков в белках показал, что их конформационные состояния почти полностью определяются ближними взаимодействиями, т.е, взаимодействиями валентно-несвязанных атомов в пределах одного остатка Влияние даже ближайших остатков ни в одном случае не ведет к повышению энергии, а проявляется лишь в характере распределения конформационных точек в пределах низкоэнергетических областей конформационных карт изолированных молекул метиламидов N-ацетил-а-аминокислот. Несмотря на наличие средних и дальних взаимодействий, которые обусловливают образование глобулы, в белках не реализуются состояния остатков с повышенной энергией ближних взаимодействий. О высокой степени соответствия конформационных состояний самым низкоэнергетическим оптимальным конформациям свободных монопептидов свидетельствует, например, отсутствие в белках остатков в формах М и Н, которые проигрывают в условиях водного окружения глобальным оптимальным конформациям не более 3,0 ккал/моль. Распределение конформационных точек (р, 1 остатков в белках на картах метиламидов N-ацетил-а-аминокислот находится в хорошем соответствии со свободной энергией состояний изолированных монопептидов. [c.186]

    При обсуждении пространственного строения пептидов и белков конформационные состояния остатков в большинстве случаев удобно характеризовать не численными значениями углов ф, vji, ш и %, ас помощью уже упоминавшегося идентификатора типа Х" , где X = R, В, L или Н п - номер остатка в последовательности, а индексы характеризуют положение боковой цепи (Х), Хг--) / = j = 1 соответствует значению углов X в области 0-120°, 2 - в области -120 -120° и 3 - в области -120-0 Все последующее рассмотрение результатов конформационного анализа пептидов и белков будем вести, используя идентификаторы Х , и лишь [c.224]

    Необратимые флуктуации и механизм самоорганизации белка. Предполагают, что в начальный период все флуктуации - периодические вращения атомных групп вокруг ординарных связей - являются беспорядочными и несинхронизированными друг с другом. В равновесных системах все флуктуации обратимы и согласно основной теории вероятности (так называемого закона больших чисел) составляют пренебрежимо малые поправки к средним значениям. За редким исключением (например, рассеяние света гомогенной средой и броуновское движение, вызываемые обратимыми флуктуациями плотности) они не коррелируют со свойствами системы и не оказывают влияние на ее переход в равновесное состояние В неравновесных системах среди множества обратимых, неустойчивых флуктуаций возникают необратимые флуктуации, оказывающие радикальное воздействие на эволюцию системы. Они не остаются малыми поправками к средним значениям, а существенно меняют сами эти значения, стирая различие между случайным отклонением и макроскопическим проявлением системы. При свертывании белка подавляющее большинство флуктуаций также обратимо и неустойчиво. Но некоторые из них приводят к сближению определенных аминокислотных остатков, и тогда те могут эффективно взаимодействовать между собой. По своим последствиям образующиеся контакты между валентно-несвязанными атомами могут быть подразделены на близко-, средне- и дальнодействующие. Флуктуации, приводящие к образованию первого вида, изменяют взаимное расположение атомных групп в пределах одного аминокислотного остатка второго вида - расположение остатка относительно соседних в последовательности третьего - относительно удаленных по цепи остатков. В зависимости от конформационного состояния белковой цепи по ходу ее сборки одни и те же флуктуации могут быть как обратимыми, так и необратимыми. Последними, т.е. бифуркационными, флуктуации становятся только в том случае, если каждая из них возникает в строго определенном месте последовательности бифуркаций между флуктуирующим клубком и трехмерной структурой. Обратимые флуктуации бесследно исчезают, а необратимые, стабилизированные специфическими невалентными взаимодействиями остатков, остаются в виде гигантских "застывших флуктуаций". [c.96]

    Рассмотренные в этой главе методологические вопросы теоретического конформационного анализа были разработаны для исследования пространственного строения низкомолекулярных органических соединений. Что же касается нашей темы - структурной организации белков, то задача такого масштаба перед расчетным методом не ставилась, и поэтому многие важнейшие вопросы, вставшие на пути к априорному расчету нативных конформаций белковых макромолекул, остались незатронутыми. Так, даже в принципе не была обсуждена сама возможность использования классического подхода, предполагающего независимость электронного и конформационного состояний молекулы. Если считать справедливыми изложенные в этой главе бифуркационную и физическую теории структурной организации белка, то доказательство применимости механической модели к данному объекту является самой главной и прежде всего требующей ответа задачей. Однако принципиальная возможность использования полуэмпирического конформационного анализа в исследовании белков также еще не предопределяет положительного решения других вопросов. Необходима методология, специально разработанная для расчета пространственного строения белковых молекул. Верхним пределом применимости изложенного метода конформационного анализа, как показано ниже, являются лишь три- и в простейших случаях тетра- и пентапептиды. Таким образом, второй важнейший вопрос на пути к решению проблемы структурной организации белка заключается в создании специфического методологического подхода, в который существующий метод конформационного анализа вошел бы как составная часть. [c.107]


    В решении задачи структурной организации белков изучение взаимодействий между валентно-несвязанными атомами в свободных аминокислотных остатках представляет особый интерес. Эти взаимодействия определяют у каждого стандартного остатка его конформационную потенцию, которая при укладке белковой цепи в нативную трехмерную структуру реализуется в виде определенного конформационного состояния. Знание максимальных конформационных возможностей свободного звена полипептидной цепи является исходным в последующем изучении средних и дальних межостаточных взаимодействий, благодаря чему оно составляет основу метода структурного анализа пептидов и белков. [c.154]

    РИС. 4-16. Возможные формы димеризующихся белков, существующих в двух конформационных состояниях в каждом протомере имеется один центр связывания с лигандом X. Пунктирными стрелками указаны равновесные процессы, рассмотренные Моно, Уайменом и Шанжё, а сплошными — Кошландом и др. [61, 62]. Жирные стрелки относятся к простейшей модели индуцированного соответствия, не учитывающей диссоциации димера. (Заметим, что, хотя все стрелки имеют только одно направление, соответствующие процессы обратимы.) Величины Ках и Квх считаются одинаковыми для всех субъединиц независимо от того, в какой форме они находятся — в мономерной или димерной. [c.300]

    Из анализа пространственного строения боковых цепей Phe, Туг, Тф, И других аминокислотных остатков в белках [108, 109] следует вод, который уже был сделан при рассмотрении пространственного [роения основных цепей. В обоих случаях отчетливо видна корреляция жду конформационными состояниями аминокислотных остатков в бел-и оптимальными конформациями соответствующих метиламидов И-ацетил-а-аминокислот. Реализующиеся в белковых трехмерных струк-X конформационные состояния остатков всегда отвечают наиболее годным конформациям свободных монопептидов. Средние и дальние модействия ни при каких обстоятельствах не вступают в противо- [c.189]

    Наборы низкоэнергетических конформационных состояний, полученные нами для всех 20 стандартных аминокислотных остатков (см. табл. 11.17), универсальны и могут быть использованы в анализе пространственного строения любой аминокислотной последовательности. По числу структурных вариантов они достаточно представительны, так как включают не только все конформационные состояния остатков, уже обнаруженные в кристаллических структурах белков, но и ряд других, потенциально возможных. [c.190]

    Следовательно, наличие в белковой глобуле согласованности всех видов невалентных взаимодействий в условиях компактной, плотной упакованной структуры, т.е. при максимальной насыщенности стабилизирующих внутримолекулярных взаимодействий, является исключительным свойством белков как гетерогенных полимерных макромолекул обычно этим свойством наделены кристаллы только низкомолекулярных соединений. У белков оно было выработано в процессе эволюции путем вариации состава и порядка аминокислот. Дошедшие до нас последовательности белков свертываются в физиологических условиях таким образом, что в конечном счете все остатки приобретают те конформации из присущих им наборов низкоэнергетических форм, которые в глобуле оказываются наиболее комплементарными друг другу. Благодаря этому происходит резкая энергетическая дифференциация конформационных состояний, практически равноценных для свободных монопептидов, и выделение из огромного количества структурных вариантов уникальной нативной конформации белковой молекулы. [c.192]

    Из1вестно, что в одном конформационном состоянии фермент лучше связывается с субстратом, чем в другом. Этот простой факт, а также тенденция мономеров белков ассоциировать приводит к ряду интересных эффектов, природа которых долгое время оставалась загадкой для ученых. Сейчас мы знаем, что кооперативные изменения конформации в олигомерных белках лежат в основе многих важных аспектов регуляции активности ферментов и метаболизма. Эти изменения вносят элемент кооперативности в связывание малых молекул (например, кислорода гемоглобином), а также субстратов и регуляторных молекул с ферментами. Вполне возможно, что многие фундаментальные свойства живых организмов непосредственно связаны с кооперативными изменениями в фибриллах, мембранах и других структурах клетки. По этим причинам было бы весьма полезно рассмотреть этот вопрос (в частности, его количественную сторону) более подробно. [c.297]

    Проблема ближних взаимодействий решена методом теоретического конформационного анализа, обычно используемого в исследованиях пространственного строения малых органических молекул. Для свободных монопептидов 20 стандартных аминокислот были найдены все возможные конформации и в каждом отдельном случае выявлена взаимообусловленность состояний основной и боковой цепей (см. гл. 5). Реальность полученных данных подтверждена результатами комплексного физикохимического исследования структур большого числа монопептидов в различных средах. Теоретические конформации монопептидов сопоставлены с геометрией основных и боковых цепей аминокислотных остатков в известных трехмерных структурах белков. Показано, что реализующиеся в белковых молекулах конформационные состояния остатков за редкими исключениями, которые, по-видимому, следует отнести к артефактам, отвечают наиболее выгодным конформациям свободных монопептидов. Средние и дальние взаимодействия ни в одном случае не вступают в противоречие с требованиями, диктуемыми ближними взаимодействиями Их роль заключается в выборе конформации остатка из числа низкоэнергетических состояний свободного монопептида. Этап исследования ближних взаимодействий завершился составлением для свободных монопептидов 20 стандартных аминокислот универсальных наборов низкоэнергетических конформаций, необходимых и достаточных для описания всех конформационных состояний остатков, встречающихся в белковых структурах (см. табл. 11.17). [c.220]

    Уникальные для каждой последовательности, они обладают специфический динамическими конформационными свойствами, необходимыми для ддуществления соответствующих функций. В этом отношении белки принципиально отличаются от синтетических полимеров, в том числе родственных по химическому типу гомополипептидов и гетерополипеп-увдов со случайным порядком аминокислот в цепи. В растворе они существуют в виде множества близких по энертии и непрерывно флуктуирующих конформационных состояний, а в твердом виде представляют собой аморфную смесь разных пространственных форм, среди которых могут быть и одномерные регулярные формы. Поэтому здесь не возникает самой проблемы поиска геометрии и конформационных возможностей молекулярных трехмерных структур. [c.101]

    В заключение раздела остановимся на двух вопросах, которые при обсуждении поэтапного метода конформационного анализа пептидов и белков, казалось бы, должны иметь первостепенное значение. Речь идет о принципах разбиения пептидной цепи на фрагменты и критерии отнесения конформационных состояний каждого рассчитываемого фрагмента к низкоэнергетическим, т.е. перспективным в последующем расчете более сложного участка пептидной цепи, и к высокоэнергетическим - неперспективным, исключаемым из расчета. Что касается первого вопроса, то постулируемая в теории структурной организации пептидов и белков согласованность ближних, средних и дальних взаимодействий не делает его принципиальным. Конечный результат в этом случае должен быть одним и тем же при любой схеме разбиения последовательности на фрагменты. Тем не менее разделение пептида на отдельные участки -ответственный момент конформационного анализа, поскольку от выбранной схемы существенным образом зависит объем вычислительных работ. Более того, заметный прогресс в расчете трехмерных структур высокомолекулярных белков можно ожидать при разработке метода априорной идентификации конформационно жестких и лабильных фрагментов аминокислотной последовательности. Обсуждение этого вопроса будет продолжено в конце книги после рассмотрения результатов расчета пептидов и белков. [c.232]

    Ответ на поставленный вопрос требует сравнения ставших теперь известными оптимальных конформаций метиламидов N-ацетил-а-аминокислот с конформационными состояниями аминокислотных остатков в нативных трехмерных структурах белков. Первые определяются лишь ближними взаимодействиями, а вторые - суммарным эффектом ближних, фсдних и дальних взаимодействий. Сопоставление должно выявить меру воздействия ближних взаимодействий на реализующиеся в белках конформационные состояния и оценить роль этих взаимодействий в структурной организации макромолекул. В соответствии с одним из принципов постулированной в главе 2 теории [14, 105-107], утверждающим наличие согласованности всех видов внутримолекулярных невалентных взаимодействий, наблюдаемые в трехмерных структурах белков конформационные состояния остатков должны входить в набор низкоэнергетических оптимальных форм метиламидов N-ацетил-а-аминокислот. Только в этом случае представится принципиальная возможность сделать следующий шаг в сторону решения на основе рассматриваемого подхода проблемы структурной организации белков. Целесообразно рассмотреть в отдельности геометрию основных и боковых цепей аминокислотных остатков [108, 109]. [c.181]

    Конформационная энергия молекулы в (IX.1.1) представляется суммой отдельных видов взаимодействий в попарно-аддитивном приближении, когда каждая пара атомов взаимодействует независимо от их внутримолекулярного окружения. Оптимум потенциальной энергии и соответствующее ему конформационное состояние находят путем минимизации функции (ф, ф) при вариации значений двугранных углов вращения вокруг единичных связей. Естественно, учитывая большой объем вычислений, эта задача может быть решена только с помощью ЭВМ. Определение конформационных состояний отдельных аминокислотных остатков по формуле (IX. 1.1) представляет собой необходимый и важный этап на пути построения конформационных карт, пространственной структуры белка. Конформационное состояние отдельно взятого аминокислотного остатка определяется взаимодействием атомов боковой цепи данного остатка с прилегающими пептидными группами. Вычисления для аминокислот с длинными боковыми цепями связаны с необходимостью учитывать как вращение вокруг их единичных связей (связи Со,-Ср и Ср-Су), так и взаимодействие соседних боковых цепей. Барьеры вращения в боковых цепях (углы у) зависят от природы атомных групп. Для алифатических групп Ео 12,6 кДж/моль, а для фенильной группы в боковой цепи Eq 2,52 кДж/моль (Г.Шерага, 1968). [c.204]

    Бифуркационная теория сборки впервые смогла дать принципиальную и непротиворечивую трактовку важнейшим особенностям структурной самоорганизации белка самопроизвольному характеру возникновения и протекания всех стадий образования трехмерной структуры, большой скорости и безошибочности процесса при беспорядочно-поисковом механизме сборки. Теория указала направление и содержание дальнейшего изучения проблемы, которые привели к разработке физической конформационной теории и созданию априорного метода расчета. Теоретическое и практическое значение имело то обстоятельство, что бифуркационная модель сборки впервые позволила представить свертывание белковой цепи как спонтанно протекающий и строго детерминированный процесс, не требующий обязательного перебора всех возможных конформационных состояний и в то же время не ставящий под сомнение беспорядочность и случайность возникновения флуктуаций. Вызванная неравновесностью процесса автоселекция флуктуаций выявила призрачность проблемы множественности локальных минимумов на потенциальной поверхности белка. Она оказалась псевдопроблемой, возникающей исключительно благодаря привлечению К описанию процесса аппарата равновесной термодинамики и статистической физики. [c.7]

    Имеется еще одно возражение против гипотезы о расплавленной глобуле, использующейся вместе с аппаратом равновесной термодинамики и формальной кинетики для объяснения экспериментальных фактов. Конкретной теоретической основой интерпретации данных о денатурации служит термодинамическая теория двух состояний Брандтса [12, 13]. Как уже отмечалось, белковая молекула в растворе, согласно этой теории, может быть представлена большим количеством микросостояний. Все они входят в состав либо распределения N (нативное макросостояние белка), либо О (денатурированное макросостояние). Теория Брандтса сделала возможным относительно простой термодинамический анализ конформа-ционного перехода N — О в предположении, что реализующиеся микросостояния не являются чем-то вновь созданным, а присутствуют в распределении N и О. Это означает, что в теории постулируется отнюдь не очевидное положение об отсутствии новых промежуточных конформационных состояний в области перехода N - О. Следовательно, главный критерий справедливости теории двух состояний Брандтса состоит в требовании отсутствия максимумов, минимумов и потенциальных ям в наблюдаемых изменениях энтальпии и энтропии при переходе от О к N (и наоборот). Иными словами, если образование трехмерной структуры белка происходит, как того требует теория двух состояний, путем постоянного усложнения и приближения к нативному состоянию, то изменения энтальпии, энтропии и свободной энергии по ходу ренатурации должны быть монотонными. Отсутствие экстремумов означает отсутствие между нативной структурой и статистическим клубком метастабильных промежуточных состояний. Механизм сборки белка проходит в этом случае в одну стадию. А теперь обратимся вновь к обсуждаемой гипотезе о расплавленной глобуле в которой постулируется образование на пути к нативной структуре близкое к ней промежуточное состояние. При существовании достаточно устойчивых обнаруживаемых экспериментально интермедиатов зависимости изменений энтальпии, энтропии и свободной [c.85]

    Описанная модель структурной самоорганизации белка непосредственно отвечает ренатурационному процессу, протекающему в условиях in vitro, когда исходное конформационное состояние молекулы максимально неупорядоченно. Сборка белка в процессе биосинтеза и при содействии шаперонов протекает в принципе по тому же беспорядочно-поисковому механизму и поэтому не требует разработки специальных моделей. Возможность свертывания аминокислотной последовательности до окончания синтеза и отхода от рибосомы в первом случае, и взаимодействие флуктуирующей цепи со специфическими белками во втором ограничивают конформационную свободу неструктурированного белка. В результате уменьшается количество обратимых, непродуктивных флуктуаций, увеличивается вероятность появления бифуркаций и, следовательно, сокращается время сборки. Иными словами, запрещая целый ряд обратимых флуктуаций, шапероны сближают друг с другом бифуркационные точки и тем самым делают процесс самоорганизации нативной конформации белка более эффективным. [c.99]

    Рассмотренная в разделе 2.1 феноменологическая бифуркационная теория свертывания белковой цепи - лишь пролегомены, самый первый шаг к созданию физической теории структурной организации белка и количественного расчетного метода. Неравновесная термодинамическая модель теории сформулирована в такой общей форме, которая еще не допускает прямой экспериментальной проверки. Значение предложенной теории состоит в том, что она, во-первых, дает принципиальную трактовку всем важнейшим особенностям сфуктурной самоорганизации белка беспорядочно-поисковому механизму сборки аминокислотной последовательности, высокой скорости и безошибочности процесса образования трехмерной структуры и, во-вторых, указывает, как показано ниже, направление дальнейшего поиска и раскрывает его содержание. В частности, принципиальное значение имеет то обстоятельство, что бифуркационная теория впервые позволила представить процесс свертывания белка, не требующий при беспорядочно-поисковом механизме сборки рассмотрения всех мыслимых конформационных состояний белковой цепи. Однако сама по себе термодинамическая теория статистико-детерминистического явления не может привести к такому уровню понимания процесса свертывания белковой цепи, который необходим для количественной оценки всех логических связей между аминокислотной последовательностью, трехмерной структурой и окружающей средой, а следовательно, и для апробации лежащих в основе теории принципов. Задача может считаться решенной только после создания физической конформационной теории н расчетного метода, предсказывающих по известному расположению аминокислот в белковой цепи координаты всех атомов в нативной трехмерной структуре и количественно описывающих механизм сборки последней. Лишь при достижении цели, поставленной именно таким образом, физическая теория структурной организации белка сможет стать основой для решения следующих фундаментальных задач, связанных уже с установлением зависимости между строением и функцией. В этом разделе рассмотрены основные положения предложенной автором структурной теории белка [38 2]. [c.100]

    Предположение о согласованности в нативной конформации белка всех внутримолекулярных взаимодействий открывает принципиальную возможность для поэтапного, фрагментарного подхода к решению проблемы структурной организации белковой макромолекулы. Это можно осуществить путем последовательного анализа трех видов взаимодействий, определяющих конформационное состояние каждого аминокислотного остатка в трехмерной структуре. К ним следует отнести, во-первых, взаимодействия атомов одного остатка между собой и с атомами двух смежных пептидных групп (ближние взаимодействия), во-вторых, взаимодействия остатка с соседними в последовательности остатками (средние взаимодействия) и, в-третьих, взаимодействия остатка с удаленными по цепи остатками (дальние взаимодействия) (рис. 1.1). Предложенное разделение взаимодействий до некоторой степени условно. Однакр среди возможных других оно представляется наиболее естественным и, как можно будет убедиться впоследствии, удобным с методологической точки зрения. Выделение трех видов невалентных взаимодействий (а не двух или четырех) не является полностью формальным, так как они довольно четко различаются по своим функциям в организации пространственной структуры молекулы белка. Но главное все же состоит не в способе разделения взаимодействий. Последовательное рассмотрение ближних, средних и дальних взаимодействий, как и взаимодействий, разделенных иным способом, может иметь смысл и привести к предсказанию нативной конформации белка только в том случае, если отобранные на предшествующих этапах наборы конформационных состояний аминокислотных остатков будут непременно включать состоя-Иия, удовлетворяющие условиям последующих этапов. Гарантом здесь Является постулированное в теории положение о согласованности всех видов взаимодействий валентно-несвязанных атомов в нативной конформации белка. [c.105]

    Боковые цепи. Результаты предшествующего рассмотрения в определенной степени предопределяют и ответ на вопрос о соответствии конформационных состояний боковых цепей аминокислотных остатков в белках и свободных молекулах метиламидов N-ацетил-а-аминокислот. В самом деле, трудно представить наличие полного соответствия у основных цепей и отсутствие такового у боковых цепей. Тем не менее анализ конформационных состояний последних с точки зрения ближних взаимодействий не лишен целесообразности. Для удобства рассмотрения боковые цепи аминокислот можно разделить на гидрофобные (неполярные) и гидрофильные (полярные). Конформации гидрофобных боковых цепей определяются прежде всего ван-дер-ваальсовыми взаимодействиями, которые могут иметь как стабилизирующий, так и дестабилизирующий характер, В первом случае они называются дисперсионными, или лондоновскими, взаимодействиями. У монопептидов из-за небольшого числа атомов в молекулах энергия дисперсионных взаимодействий невелика, и поэтому их конформационные состояния определяются в основном мощными силами отталкивания. У полярных боковых цепей значительную роль могут играть также (но не исключительно ) электростатические взаимодействия и водородные связи. Среди боковых цепей гидрофобных остатков можно выделить цепи, имеющие разветвление при атоме СР (Val, Не) и не имеющие такого разветвления. К последним относится группа аминокислотных остатков Phe, Туг, Тгр, His с ароматическими боковыми цепями. Изложенные в предшествующем разделе результаты теоретического конформационного анализа метиламида N-aцeтил- -фeнилaлaнинa (см. табл. 11,14) свидетельствуют о том, что в этой молекуле пространственные формы основной и боковой цепей взаимосвязаны каждой форме основной цепи соответствуют определенные энергетически выгодные положения заместителя, На рис, 11.26 представлена конформационная карта ср-у фенил аланинового монопептида, разделенная пунктирными линиями на области, [c.186]

    Все варианты с углом %] —60° у первого остатка и Х -180° у последнего имеют заведомо большую энергию, поскольку боковые цепи при этих значениях ориентированы в противоположные стороны и не в состоянии эффективно взаимодействовать ни между собой, ни с промежуточными остатками. Можно также не рассматривать варианты с R-формой у предшествующего пролину остатка (если он не Gly) и варианты с дипептидным фрагментом в (L-L)-фopмe (если хотя бы один остаток не Gly). Такие конформационные состояния имеют сравнительно высокую энергию и в белках не реализуются. Кроме Gly, ни один из стандартных остатков почти не встречается в нативных конформациях белков в состояниях с Н-формой основной цепи. Все это полезно иметь в виду при вьшолнении конкретных расчетов. [c.222]


Смотреть страницы где упоминается термин Белки конформационные состояния: [c.201]    [c.201]    [c.216]    [c.113]    [c.365]    [c.38]    [c.77]    [c.86]    [c.94]    [c.110]    [c.129]    [c.157]    [c.183]    [c.185]    [c.188]    [c.189]    [c.190]    [c.191]    [c.191]    [c.199]    [c.216]    [c.223]   
Биофизическая химия Т.3 (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Конформационные



© 2025 chem21.info Реклама на сайте