Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дрожжи интроны

    Разорванные (мозаичные) гены, составленные из экзонов и интронов, характерны для самых разных представителей эукариот — растений, дрожжей, различных беспозвоночных (черви, насекомые), птиц и млекопитающих, включая человека. Наличие и расположе- [c.172]

    В случае митохондриальных интронов дрожжей белки не только специфичны по отношению к индивидуальным интронам, но и кодируются интронами, на которые затем и воздействуют. (Эта модель не применима ко всем ми- [c.261]


    Противоречит ли наличие интронов в геноме митохондрий дрожжей предположению о том, что митохондрии появились в результате возникшего в древности симбиоза, когда прототип бактерии был встроен в цитоплазму эукариотической клетки Нет, если предположить, что такое встраивание предшествовало потере интронов прокариотами, хотя при этом мы должны допустить независимую потерю способности к удалению интронов при эволюции бактерий и митохондрий позвоночных. [c.265]

    Тщательное изучение нуклеотидных последовательностей границ сплайсинга показывает, что единственное их общее свойство-наличие таких коротких канонических последовательностей. Они находятся на границах экзон—интрон чрезвычайно большого числа видов организмов, от животных до дрожжей. Но никакого другого существенного сходства не удается выявить даже при рассмотрении отдельных групп интронов (таких, как интроны определенного вида животных, интроны семейства генов и т.д.). [c.326]

    У дрожжей интроны могут иметься в митохондриальном гене одного штамма, но отсутствовать в том же гене другого штамма. Но-видимому, такие факультативные интроны способны включаться в гены и выходить из них подобно транспозонам. С другой стороны, в некоторых митохондриальных генах дрожжей интроны занимают те же позиции, что и в митохондриях Aspergillus и Neurospora значит, они были унаследованы от общего предка этих трех грибов. Вероятно, интроны имеют древнее происхождение, и хотя они были утрачены многими бактериями, они сохранились в геномах тех органелл, где регуляция сплайсинга РНК помогает контролировать экспрессию гена (разд. 10.5.5). [c.493]

    Такая интрон-экзонная, или мозаичная, структура гена часто встречается у млекопитающих, реже — у высших растений и дрожжей. Интроны обнаружены в генах митохондрий. У эубакте-рий интроны вообще отсутствуют или чрезвычайно редки. [c.405]

    Для того чтобы добиться экспрессии генов этих ферментов в дрожжах S. erevisiae, пришлось провести делецию (удаление) интронов из клонированных в E. oli нативных генов и поставить эти гены под контроль дрожжевых промоторов и концевых регуляторных последовательностей. [c.106]

    Поскольку дрожжи представляют собой эукариотический организм, можно было бы ожидать, что гены различных эукариот, в том числе и те, которые содержат интроны, будут корректно экспрессироваться в дрожжевых клетках. Однако это не так. Например, экспрессия генов -глобнна кролика в дрожжах не происходит благодаря некорректности транскрипции и последующего сплайсинга РНК. Тем не менее, применяя приемы, аналогичные использовавшимся при клонировании в бактериях, удается достичь синтеза чужеродных белков в дрожжевых клетках. Такие клетки, подобно В. subtilis, секретируют значительное количество белков во внеклеточную среду, что используют также для секреции чужеродных белков. С этой целью к экспрессируемому гену присоединяется участок, кодирующий сигнальный пептид, обусловливающий секрецию и отщепляемый в ее процессе. В результате в клетке синтезируется белок, содержащий на N-конце сигнальный пептнд. Этот белок секретируется в окружающую среду. Таким образом были получены, например, штаммы дрожжей, секретирующие интерферон человека. [c.440]


    Все классы генов могут иметь прерывистое строение все гены, кодирующие белки, а также гены, кодирующие рРНК, и гены, кодирующие тРНК. Интроны обнаружены также в митохондриальных генах дрожжей и хлоропластных генах. Прерывистые гены, по-видимому, присутствуют в клетках эукариот всех классов, хотя их содержание варьирует. Например, их доля среди ядерных структурных генов позвоночных может превышать таковую у грибов. [c.253]

    Интроны были обнаружены в ядерных генах тРНК дрожжей. Интересная особенность в этом случае состоит в том, что интрон всегда занимает одно и то же относительное положение, располагаясь в начале петли антикодона. Это позволяет содержащим интрон предшественникам тРНК принимать конформацию, при которой антикодон спарен с частью интрона. Это может иметь отношение к механизму сплайсинга (см. рис. 26.1). [c.254]

    В отличие от ядерных структурных генов дрожжей границы экзон-интрон в митохондриях не подчиняются правилу GT-AG на границах отсутствует также и какая-либо другая универсальная последовательность. Поэтому РНК-матураза, по-видимому, проявляет специфичность по отношению к определенному интрону или интронам. Возможная функция РНК-матуразы ЬохЗ состоит в узнавании концов только второго интрона, поэтому окру- [c.260]

    Было обнаружено существование интересного сходства между митохондриальными интронами дрожжей и некоторыми генами рРНК. В их состав входит несколько довольно коротких сходных последовательностей. Они расположены на некотором расстоянии от границ экзон—интрон (на самих границах таких консервативных последовательностей нет). Некоторые последовательности причастны к сплайсингу, по крайней мере, в случае гена box, поскольку они обеспечивают создание сайтов, соответствующих 1/ш -мутациям box 9 и box 2, блокирующим сплайсинг. [c.260]

    По-видимому, все митохондриальные интроны дрожжей имеют такие канонические последовательности. Так, их обнаруживают в интронах, имеющих открытые кодирующие участки, и в других интронах, в которых все возможные рамки считывания заблокированы. К ядерным генам, содержащим канонические последовательности, относится ген Tetrahymena, кодирующий предшественник рРНК, подвергающийся автономному сплайсингу. Эти данные служат замечательной демонстрацией существования неожиданного эволюционного сходства ядерного и внеядерных геномов и позволяют сделать предположение о том, что, возможно, сплайсинг разных РНК протекает в соответствии с общим механизмов. Это заключение наводит на мысль об интересном парадоксе, касающемся механизмов сплайсинга. [c.261]

    Является ли постоянство структуры характерным признаком копий множественных генов Общий план строения глобиновых генов консервативен. Г ены интерферона, по-видимому, имеют сходную в общих чертах структуру, для которой характерно полное отсутствие интронов. Но гены актина имеют прерывистую структуру, сильно варьирующую у разных генов. У этих генов участки, кодирующие белок, обладают высокой степенью гомологии, но сходство между фланкирующими или даже нетрансли-руемыми областями в пределах одного вида организмов незначительно (или оно вообще отсутствует). Например, интроны генов актина D. melanogaster занимают разные положения. Ни один из этих генов не похож на единственный ген актина, обнаруженный в дрожжах. Они отличаются также от актиновых генов морского ежа по меньшей мере некоторые из них объединены в кластер. Таким образом, если все эти актиновые гены произошли от общего гена-предка, расположение экзонов и интронов претерпело существенные изменения. Возможно, что ген-предок обладал большим числом интронов, и в разных копиях гена внутри вида или у разных видов были утеряны разные интроны. Несомненно, это предполагает более высокую скорость изменений, чем в случае глобиновых генов. [c.279]

    Отличительная особенность митохондриального генома дрожжей состоит в пространственной разобщенности генов, кодирующих рРНК, что встречается крайне редко. Ген, кодирующий 15S-pPHK, непрерывен и располагается на расстоянии около 25 000 п.н. от гена для 21S-pPHK. В некоторых штаммах дрожжей последний ген имеет один интрон (как показано на карте), в других штаммах он не прерывается. [c.285]

    Удобный объект для изучения сплайсинга-температурочувствительные мутанты дрожжей, у которых не удаляются интроны, и в ядре накапливаются предшественники тРНК, имеющие прерывистое строение. Процессинг фланкирующих последовательностей может происходить обычным способом. Молекулярный механизм возникновения этого дефекта неясен, но известно, что он специфичен для прерывистых генов, поскольку тРНК, кодируемые непрерывными генами, могут созревать и транспортироваться в цитоплазму. [c.318]

    Из нуклеотидных последовательностей границ сплайсинга и окружающих их участков очевидно, что Нй эхой комплементарности между соответствующими левой и прйюэй границами нет это исключает возможность их непосредственного соединения друг с другом путем спаривания оснований. Другая возможность состоит в специфическом попарном узнавании последовательностей на границах экзон—интрон белками или РНК. Модели такого рода могут быть применены к митохондриям дрожжей, где сплайсинг осуществляется только по нескольким парам границ (как описано в гл. 20). В случае гораздо большего числа границ в ядерных молекулах труднее проверить справедливость таких моделей. [c.325]


Рис. 12.10. Организация митохондриального генома дрожжей (внешнее кольцо) и человека (внутреннее кольцо). Фрагменты нуклеотидной последовательности с известными функциями отмечены черным. Интроны изображены в виде белых прямоугольников, за исключением тех случаев, когда в них содержатся открытые рамки считывания (URF), изображенные в виде цветных прямоугольни- Рис. 12.10. <a href="/info/1338564">Организация митохондриального</a> генома дрожжей (внешнее кольцо) и человека (<a href="/info/1572808">внутреннее кольцо</a>). <a href="/info/1904207">Фрагменты нуклеотидной последовательности</a> с известными функциями отмечены черным. Интроны изображены в виде белых прямоугольников, за исключением тех случаев, когда в них содержатся <a href="/info/1324832">открытые рамки считывания</a> (URF), изображенные в виде цветных прямоугольни-
    В отличие от человека у некоторых растений и грибов (включая дрожжи) митохондриальные гены содержат интроны, которые должны быть удалены из транскрипта с последующим сплайсингом (разд. 3.2.7). У растений интроны обнаружены также примерно в 20 генах хлоропластов. Многие интроны в генах органелл содержат родственные нуклеотидные последовательности, которые могут исключаться из РНК-транскриптов в результате реакции, катализируемой самой РНК (разд. 9.4.14). хотя в этом самосплайсинге обычно участвуют и белки. Открытие интронов в генах органелл было неожиданным с точки зрения эндосимбиотической теории происхождения энергопреобразующих органелл, гак как в генах бактерий, от предков которых могли произойти митохондрии и хлоропласты, интронов не обнаружено. [c.493]

    У дрожжей для кодирования всех известных продуктов митохондриальных генов нужно менее 20% информации, которая может быть потенциально заключена в ДНК митохондрий, но все попытки найти в ней какие-то дополнительные гены не привели к успеху. Причина такого противоречия-то, что митохондриальная ДНК дрожжей содержит очень много некодирующих участков, которые можно разделить на три категории. Во-первых, в некоторых генах имеются длинные вставочные последовательности (интроны) например, гены цитохрома Ь и субъединицы I цитохромоксидазы почти в десять раз больше, чем можно было бы ожидать, исходя из размера кодируемых ими белков. Разные штаммы могут резко отличаться друг от друга по числу и длине таких интронов. Во-вторых, некоторые митохондриальные мРНК имеют некодирующие лидерные последовательности, которые намного длиннее кодирующих участков. В-третьих, около половины митохондриальной ДНК дрожжей состоит из сегментов, на 95% образо- [c.61]

    У некоторых дрожжей, в отличие от человека, митохондриальные гены содержат интроны, которые, вероятно, удаляются из мРНК с последующим сплайсингом. Однако нет никаких данных о симметричной транскрипции у дрожжей все гены, кроме одного, транскрибируются с одной цепи ДНК, причем существует несколько промоторов для различных генов. [c.64]

    Открытие интронов в митохондриальных генах дрожжей (а также и в некоторых генах хлоропластов) было неожиданным с точки зрения эндосимбио-тической теории происхождения митохондрий, так как в геноме бактерий интроны не обнаружены. Кроме того, интроны часто имеются в митохондриальном гене одного штамма дрожжей, но отсутствуют в том же гене у другого штамма. По этой и другим причинам было высказано предположение, что интроны в ДНК некоторых биоэнергетических органелл представляют собой остатки каких-то перемещающихся элементов (разд. 8.6. 0. Однако до сих пор не выяснено ни происхождение этих расщепленных генов в ДНК органелл, ни их влияние на организм. [c.64]

    Интрон-экзонная структура характерна для ядерных генов эукариот, а также для генов, локализованных в органеллах эукариотической клетки, например в митохондриях, и не обнаружена или по меньшей мере очень редка у прокариот. Количество интронов в разных генах, а также их длина сильно различаются. Число интронов колеблется от О (в генах, контролирующих гистоны) до 51 (в структурном гене коллагена). Длина интрона варьирует от нескольких пар оснований (в генах тРНК дрожжей) до нескольких тысяч пар оснований (в генах для рРНК нейроспоры). [c.482]

    Строение. Гены эукариот по строению и характеру транскрипции значительно отличаются от прокариотических генов (см. табл. 1.1). Их отличительной особенностью является прерывность, т. е. чередование в них последовательностей нуклеотидов, которые представлены (экзоны) или не представлены (интроны) в мРНК. Отсюда ясно, что интроны относятся к некодирующим последовательностям Они могут располагаться не только в области, ограниченной инициирующим и терминирующим кодонами, но и вне их, в начале или в конце гена. Их длина может превышать 10 т.п.н. низших эукариот прерывные гены составляют меньшинство всех генов (5 % у дрожжей), а у высших — большинство (94 % у млекопитающих). Отметим, что мозаичность генов найдена и в прокариотических клетках. [c.27]


Смотреть страницы где упоминается термин Дрожжи интроны: [c.166]    [c.167]    [c.170]    [c.173]    [c.166]    [c.167]    [c.170]    [c.173]    [c.139]    [c.315]    [c.254]    [c.262]    [c.285]    [c.318]    [c.318]    [c.315]    [c.98]    [c.98]    [c.241]    [c.186]    [c.187]    [c.186]    [c.187]    [c.33]    [c.21]    [c.18]   
Гены и геномы Т 2 (1998) -- [ c.23 , c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Дрожжи



© 2025 chem21.info Реклама на сайте