Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектр синтез в живых клетках

    Сравнивая фиг. 94 с графиками, приведенными в предыдущем разделе, мы видим, что наш новый график охватывает более широкий участок спектра. Дело в том, что в предыдущих разделах мы интересовались главным образом неорганическими фотохимическими реакциями синтеза органических соединений. Такие реакции протекают под действием света с длиной волны до 210 нм. Теперь же нас интересует летальное действие солнечного ультрафиолета на живое вещество, т. е. речь идет уже не о возможности синтеза, а о возможности избежать распада. Живые клетки сильнее всего поглощают ультрафиолет с длиной волны от 240 до 280 нм. Облучение таким светом может быть смертельным даже при энергии ниже установленного нами предела поглощения, т. е. ниже 1 эрг на 1 см в спектральном интервале шириной 5 нм. Вот почему сейчас мы будем говорить об ультрафиолете с несколько большей длиной волны. [c.343]


    Все клетки организма имеют идентичный геном и синтезируют от 10 000 до 20 ООО различных белков, однако отличаются между собой наличием специфических для данных клеток белков. Для эритроцитов характерно высокое содержание гемоглобина, для кожи — коллагена, поджелудочной железы — ферментных белков, скелетных мышц — сократительных белков актина и миозина. Концентрация различных белков, а иногда и их спектр, изменяется с возрастом, а также при воздействии внутренних и внешних факторов среды, патологических изменениях обмена веществ. Даже относительно небольшие изменения в спектре синтезируемых белков в клетке способны существенно влиять на ее функции и структуру. Все это свидетельствует о том, что в живых организмах существует контроль белкового синтеза. Механизмы регуляции белкового синтеза играют существенную роль в процессах адаптации организма к мышечной деятельности, так как обеспечивают увеличение или появление новых адаптивных белков в мышцах и других тканях. [c.253]

    Выбор из двух возможных вариантов был сделан на основе химических реакций дикетена, всегда приводящих к образованию производных ацетоуксусной кислоты. Применение ЯМР на ядрах С позволило бы обойтись без эксперимента. Ведь первая формула вполне симметрична значит, этой форме соответствовал бы спектр, содержащей всего два сигнала, а второй, оказавшейся истинной,— целых четыре. Получается примерно то же, что при записи ИК- и КР-спектров чем симметричнее молекула, тем меньше линий. Впрочем, с дикетеном можно было бы разобраться и с помощью обыкновенного протонного резонанса. Но в более сложных случаях,— например, при определении конструкции полимерных цепей,— без углеродного резонанса не обойтись. Об успешном решении одной из таких задач — выяснении структуры привитого сополимера хлористого винилидена с акриловой кислотой, полученного на матрице,— мы уже знакомы. Не было только сказано, как же доказали его регулярную структуру. Доказательство было основано на применении ЯМР С. Регулярная структура, содержащая одни и те же повторяющиеся звенья, должна дать спектр с минимальным числом линий. Был сделан теоретический расчет этого числа, а также числа линий для каждого из других вариантов структуры. Записанный спектр полимера оказался минимальным . Если бы углеродный резонанс появился лет на 30 раньше, он позволил бы сэкономить тысячи рабочих дней биохимикам, изучавшим в эти годы пути синтеза живой клеткой различных нужных ей веществ. Обычно очень [c.229]


    После прекращения воздействия возобновление активной жизнедеятельности (переключение клетки из стресса в основное гомеостатическое состояние) сопровождается восстановлением клеточного цикла, синтеза белка и "забыванием" других последствий пребывания в стрессе. При сохранении экстремальных условий адаптация немыслима без выхода клетки из состояния стресса и соответствующей моди] ации белок-липидных мембранных комплексов. Возобновление синтеза белка в новых условиях, по-видимому, приводит к появлению в клетке полипептидов с измененными физико-химическими характеристиками (pH и температурный оптимум, гидрофильность и др.) и изоферментов. Этот факт отмечен при закаливании растений к высоким и низким температурам. Щ)ичем изменения в электрофоретических спектрах растворимых белков отмечают позже, чем возрастет устойчивость растительного организма. Нам представляется, что во время стресса, когда синтез основных белков выключен, в репарации нарушенных белковых структур протоплазмы должен превалировать механизм их ренативации. Для этого в живой клетке существуют специальные ферментные системы (изомеразы белковых ди-суль ов, тиоредоксин) и белки-шапероны, стабилизирующие частично развернутые макромолекулы и препятствующие их необратимым внутри- и межмолекулярным взаимодействиям (ОегМлв, ЗатЬгоок, 1992). [c.121]

    Среди многочисленных компонентов биосистем молекулярного уровня исключительная роль в процессах жизнедеятельности, бесспорно, принадлежит белкам. Активно участвуя практически во всех протекающих в клетках и организме процессах, они наделены поистине универсальными биофизическими и биохимическими свойствами. Белки обладают способностью к взаимному превращению всех необходимых для жизни видов энергии тепловой, механической, химической, электрической и световой. Кроме того, они входят в состав соединительных и костных тканей, кожи, волос и других структурных элементов всех уровней живого организма, выполняя динамическую опорную функцию и обеспечивая нежесткую взаимосвязь органов, их механическую целостность и защиту. Нет смысла перечислять все функции белков, спектр их действия огромен. Отметим лишь, что по разнообразию своих физических и химических проявлений белки несопоставимы с возможностями любого другого класса соединений живой и неживой природы. Они "умеют" делать все, и именно поэтому назначение генетического аппарата любого живого организма сведено к хранению информации только о белках и к их синтезу. Биосистемы всех уровней, в том числе и молекулярного, можно считать "произведениями" белков. При функциональной универсальности природных аминокислотных последовательностей деятельность каждого отдельного представителя этого класса уникальна в отношении функции, механизма действия, природы лиганда и внешней среды. И, наконец, белки проявляют высочайшую активность в физиологических, мягких условиях и не образуют при своем функционировании побочных продуктов. [c.50]

    Проведенные исследования показали, что в живых объектах происходят периодические колебания диамагнетизма, связанные с ритмами клеточного метаболизма, в ходе которых меняется соотношение диа- и парамагнетиков. О перераспределении веществ в метаболизирующих клетках свидетельствует сравнение динамики магнитной восприимчивости биомассы пивных дрожжей в процессе сбраживания ими зеленого пива с их ЭПР-спектрами. При накоплении в дрожжах парамагнитных продуктов магнитная восприимчивость снижалась и, наоборот, повышалась при уменьшении их образования и активации синтеза диамагнитных соединений. Зависимость величины магнитной восприимчивости микробов от наличия в клетках парамагнетиков (марганцезависимых ферментов) нами была отмечена ранее у магнитных диссоциантов сибиреязвенноподобных бацилл. [c.117]


Смотреть страницы где упоминается термин спектр синтез в живых клетках: [c.42]    [c.42]   
Физическая Биохимия (1980) -- [ c.131 ]




ПОИСК







© 2025 chem21.info Реклама на сайте