Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптические сенсоры биосенсоры

Рис. 32.7. Конфигурации биосенсоров на основе изменений спектров веществ при гомогенных реакциях, а сенсор с одни. оптическим во.юкпом б сенсор с пучком оптических волокон и реакционной зоной толщиной I. Рис. 32.7. Конфигурации биосенсоров на <a href="/info/1538605">основе изменений</a> <a href="/info/358149">спектров веществ</a> при <a href="/info/4906">гомогенных реакциях</a>, а сенсор с одни. оптическим во.юкпом б сенсор с <a href="/info/128738">пучком оптических</a> волокон и <a href="/info/321318">реакционной зоной</a> толщиной I.

    Возможно использование и других типов физических ответов. Например, для реакций, сопровождающихся образованием или расходованием О2, могут быть сконструированы оптические биосенсоры. В качестве примера такого сенсора может служить концевая часть оптического волокна, покрытая двойной пленкой, состоящей из флуоресцирующего порфиринового красителя, заплавленного в полистирол, и соответствующей оксидазы, например глюкозооксидазы. По оптическому волокну к исследуемому образцу, в который погружен биосенсор, подвсн дится возбуждающее излучение и по нему же отводится к флуориметру испускаемое излучение. Интенсивность флуоресценции порфирина понижается в присутст ВИИ О2, и таким образом, может быть соотнесена с концентрацией О2 в слое, находящемся в непосредственном контакте с биосенсором. Расход О2, обусловленный присутствием окисляемого соединения, приводит к уменьшению концентрации О2 в слое, прилегающем к пленке, содержащей порфирин, воздействуя таким образом на интенсивность флуоресценций. [c.256]

    Применяются самые разнообразные физические трансдьюсеры электрохимические, оптические, термические, пьезоэлекфические, акустические и т.д. В настоящее время наиболее широко используются биосенсоры с электрохимическими преобразователями. Одни из них представляют собой специальный электрод, на который нанесен слой биоматериала, а другие регистрируют ток электрохимической реакции одного из участников ферментативного процесса на поверхности электрода. Первые относятся к потенциометрическим сенсорам, а вторые - к амперометрическим. Функционально биосенсоры сопоставимы с биорецепторами, которые преобразуют реакцию живых организмов на воздействие окружающей среды в электрические сигналы [c.292]

    В зависимости от измеряемого параметра, характеризующего чувствительность датчика к определенному компоненту, выделяют электрохимические (потенциометрические, вольтамперометрические, амперометрические, кулонометрические, кон-дуктометрические), оптические (спектрофотометрические, люминесцентные), чувствительные к изменению массы (пьезоэлектрические и акустико-поверхностно-волновые), магнитные и термометрические датчики. Дополнительная классификация химических сенсоров проводится по определяемому компоненту пробы. Соответственно сенсоры делятся на ионные, молекулярные, газовые, биосенсоры, включая ферментативные и иммуносенсоры. Учитывая сложность классификации (полная классификация и история создания сенсоров может быть найдена в работе [330]) и разнообразие химических сенсоров, в данной главе представлены лишь отдельные группы сенсоров, в которых существенную роль играет модифицирование поверхности неорганических носителей. [c.468]


    Важной проблемой при создании ферментных сенсоров является выбор метода иммобилизации биологически активных молекул на твердой поверхности. В работе [373[ проведено сравнение чувствительности оптических биосенсоров с иммобилизованной различными способами уреазой по отношению к ионам тяжелых металлов [c.473]

    Рассматривая ферменты как специфические химические преобразователи, переводящие определяемое вещество в форму, детектируемую физическими или химическими методами, удалось придумать и разработать новый класс сенсоров, для которых характерна чувствительность к биологическим соединениям. Перспективным путем повышения селективности и чувствительности и расширения возможностей этих устройств является комбинирование различных ферментов, например эстераз, дегидрогеназ и оксидаз с детекторами-полярографическими, кондуктометрическими, потенциометрическими, акустическими и оптическими. Б первых ферментных электродах ферменты физически удерживались на поверхности сенсора или в непосредственной близости от нее. Позже были предложены методы химической иммобилизации, осаждения и другие. Коферменты также физически или химически закрепляются на поверхности сенсора. Перевод фермента в нерастворимую форму как способ увеличения его времени жизни позволяют избежать осложнений, связанных с осмотическими явлениями в коллоидных растворах, особенно когда в ферментном электроде используется проницаемая для определяемого компонента мембрана В идеальном случае ферментный биосенсор должен работать непосредственно в неразбавленной цельной крови, подобно газовым и рН-электродам, в свое время произведшим революцию в анализе. [c.11]

    Оптические. В оптических сенсорах спектроскопическое определение связано с химической реакцией. Оптические сенсоры часто называют оптодами, и в будущем применение оптических волокон будет повсеместным. Оптические измерения используются во многих биосенсорах. В зависимости от типа оптических сенсоров в них измеряют поглощение, отражение или люминисценцию. [c.710]

    Рассеяние света давно является способом получения информации о размере, форме I составе частиц, однако в последние годы разработаны новые более мощные методы нализа, основанные на рассеянии лазерного света, которые, вероятно, найдут приме-[епие в волоконно-оптических сенсорах. В этой главе мы рассмотрим механизмы >ассеяния лазерного света частицами (размером от макромолекул до микроорганиз-юв и более крупными), использование этого явления для изучения размеров частиц, их )ормы и скорости движения, других потенциально полезных для биотехнолога араметров и затем обсудим, как эти методы могут быть воплощены в биосенсорах. [c.539]

    Биораспознающий компонент биосенсора—это белок, макромолекула или комплекс со специфической поверхностью или внутренними распознающими центрами, необходимый для распознавания определяемого вещества. Компонент обусловливает селективность по отношению к определяемому веществу и передает сигнал на преобразователь. Тип реакции, катализируемой фермен> том, определяет выбор преобразователя. Определяемое вещество, а значит, и доступньк методы преобразования обусловливают природу биораспознающего компонента. Рассмотрим два примера, в которых фермент используют для создания сенсора на субстрат этого фермента. На схеме 7.8-1 ферментативная реакция включает перенос злектрона таким образом, для определения холестерина можно использовать в качестве преобразователя амперометрический электрохимический сенсор. Схема 7.8-2 включает изменение [Н+1 следовательно, контроль превращения ацетилхолина возможен с помощью рН-электрода или рН-чувствительного красителя в оптическом приборе. Другие ферменты можно использовать в случае реакций гидролиза, этерификации, расщепления и т. д. определяемое вещество обычно является субстратом фермента. (Как можно провести анализ, если вы не смогли найти подходящую ферментативную реакцию с участием определяемого вещества, ио знаете, что оно является иигибитором ферментативной реакции ) [c.519]

    Миниатюризация аналитических приборов, основанных на регистрации света, с помощью систем волоконной оптики предоставляет неисчерпаемые возможности для использования в биосенсорах. Быстрое развитие оптикоэлектронных приборов твердотельных лазеров, интегральных оптикоэлектронных схем, новых типов оптических волокон, соединителей, мультиплексеров-в будущем обещает миниатюризацию не только сенсоров, но и вообще измерительного оборудования. Кроме того, достижения молекулярной биологии и особенно белковой инженерии сделают возможным конструирование для биосенсоров специальных рецепторов с желаемыми характеристиками. Эти два направления приведут к появлению совершенно нового поколения высокоселективных миниатюрных, портативных, стабильных и недорогих биосенсоров, которые можно будет применять как в медицине, так и в промышленности. [c.516]

    Биосенсоры. Существует огромное количество биосенсоров различной конструкции и принципа действия, включая рассмотренные выше электрохимические, оптические и массчувствительные сенсоры. В биосенсорах в качестве активных элементов используются селективность иммобилизованных биологически активных веществ или на границе раздела раствор — мембрана реализуется биохимический процесс. Наиболее распространенными биосенсорами являются ферментные (энзимные) и иммуносенсоры. Отличительной особенностью ферментных сенсоров и иммуносенсоров является их исключительно высокая селективность, связанная со специфическим действием фермента и еще более специфическим взаимодействием антитело — антиген. [c.473]


    Биохимические и микробиохимические процессы все шире применяются в фармацевтической и пищевой промышленности, очистке сточных вод и энергетике. Очень важную роль в биотехнологических процессах играет брожение. Поэтому контроль сырья, клеточной популяции и конечных продуктов - необходимое условие обеспечения эффективности всей системы. Для определения органических соединений можно использовать спектрофотометрию и хроматографию, однако эти методы непригодны для непрерывных измерений в режиме на линии (on-line). Электрохимическое определение таких соединений имеет явные преимущества так, можно проводить измерения без предварительной подготовки проб и, кроме того, не требуется их оптическая прозрачность. В последние годы разработано множество биосенсоров для определения органических соединений. Многие ферментные сенсоры обладают высокой специфичностью по отношению к представляющим интерес субстратам, однако используемые в них ферменты обычно дороги и неустойчивы. Микробные сенсоры состоят из иммобилизированных микроорганизмов и какого-либо электрохимического датчика и пригодны для непрерывного контроля биохимических процессов [1-3, 19, 20]. Принцип работы предложенных автором этой главы микробных сенсоров-это ассимиляция органических соединений микроорганизмами, что непосредственно регистрируется электрохимическим датчиком. В данной главе описано несколько микробных сенсоров, разрабатываемых в Японии. [c.20]

    В этом биосенсоре рецепторный белок иммобилизуют на внутренней поверхности полого диализного волокна, образующего измерительную камеру преобразователя. Эту конструкцию успешно использовали при разработке глюкозного сенсора [14, 19]. Специфическим рецептором для сахаров служил конканавалин А ( on А), а высокомолекулярный (мол. масса 70 ООО) меченный флуоресцеином декстран (FlT -декстран) использовали как аналог определяемого вещества. on А ковалентно иммобилизовали в полой целлюлозной трубке вне поля зрения оптического волокна [22]. [c.509]


Смотреть страницы где упоминается термин Оптические сенсоры биосенсоры: [c.549]   
Аналитическая химия Том 2 (2004) -- [ c.546 ]




ПОИСК





Смотрите так же термины и статьи:

Биосенсоры

Биосенсоры оптические

Оптические биосенсоры ферментативный сенсор

Оптические сенсоры

Сенсоры



© 2025 chem21.info Реклама на сайте