Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каскадный механизм регуляторный

    Концентрация глюкозы в норме натощак составляет 80 мг/100 мл (4,4 мМ). В течение дня концентрация глюкозы в крови в норме колеблется от 80 мг/100 мл перед едой до примерно 120 мг/100 мл после еды. Как же поддерживается относительно постоянный уровень содержания глюкозы, несмотря на значительные изменения в ее поступлении и использовании Выше мы уже обсуждали основные регуляторные элементы, так что теперь мы рассмотрим их во взаимодействии. Содержание глюкозы в крови регулируется прежде всего печенью, которая может поглощать и вьщелять в кровь большое количество глюкозы в ответ на гормональные сигналы и на само изменение концентрации глюкозы (рис. 23.18). Повышение концентрации глюкозы в крови, происходящее после приема богатой углеводами пищи, в свою очередь вызывает повышение содержания глюкозо-6-фосфата в печени, так как только в этих условиях каталитические участки глюкокиназы заполняются глюкозой. Напомним, что глюкокиназа в отличие от гексокиназы имеет высокую Км для глюкозы ( 10 мМ, тогда как концентрация глюкозы в крови натощак составляет 4,4 мМ) и не ингибируется глюкозо-6-фосфатом. В результате при повышении содержания глюкозы в крови скорость образования глюкозо-б-фосфата в печени увеличивается. Дальнейшая судьба глюкозо-6-фосфата регулируется в основном противоположно направленным действием глюкагона и инсулина. Глюкагон запускает каскадный механизм регуляции, [c.292]


    Др. тип регуляции активности ключевых ферментов-их хим. модификация (напр., обратимое ковалентное фосфорилирование, гликозилирование). Нек-рые ферменты активны в модифицированном, а ряд ферментов - в немодифици-рованном состоянии. Хим. модификация и превращение модифицированного фермента в исходную форму катализируются разными ферментами, чаще всего аллостерич. природы, к-рые, т. обр., выступают в роли регуляторов активности ферментов. Так, катализирующая фосфорилирование белков, в т. ч. ферментов, цАМФ-зависимая протеинкиназа-тетрамерный белок, состоящий из двух типов субъединиц (полипептидов). Фермент активен лишь после связывания двух молекул циклич. аденозинмонофосфата (цАМФ) с двумя регуляторными субъединицами в результате такого связывания фермент диссоциирует на две каталитически активные субъединицы и димер, с к-рым связаны две молекулы цАМФ. Т. обр., изменение активности ферментов путем их хим. модификации дополняет аллостерич. регуляцию и составляет часть каскадного механизма регуляции. Хим. модификацию ферментов осуществляют также специфич. протеазы, катализирующие ограниченный протеолиз и тем самым инактивирующие ферменты (напр., разрушая апоформы ферментов) или, наоборот, превращающие неактивные проферменты (напр., проферменты пищеварит. протеаз-пепсина и трипсина) в каталитически активные формы. [c.219]

    Имеющее регуляторное значение изменение активности фермента часто усиливается при помощи каскадного механизма первый фермент воздействует на второй, второй — на третий и т. д. Этот механизм обеспечивает быстрое появление больших количеств активной формы последнего фермента цепи. Примером каскадного механизма может служить механизм свертывания крови [89], представленный схематически на рис. 6-16. Мы видим последовательность, состоящую из пяти ферментов и начинающуюся с фактора XII, в которой каждый фермент активирует следующий путем отщепления небольшой части пептидной цепи (ограниченный протеолиз). На конечном этапе тромбин воздействует на фибриноген и, отщепляя небольшой пептид, превращает его в фибрин — специализированный белок, который спонтанно свертывается. Какие факторы препятствуют выходу каскадного механизма из-под контроля Почему при небольшом кровоподтеке весь протромбин в нашем организме не превращается в тромбин и не происходит свертывания всей крови Здесь, несомненно, имеет место та же ситуация, что и в случае сАМР, который быстро удаляется из системы с помощью специфического фермента существуют механизмы удаления активированного фермента из каскадной последовательности, представленной на рис. 6-16. Помимо этого имеется специальная ферментная система, растворяющая сгусток крови при заживлении раны [89]. [c.72]


    В гл. 3 дана общая картина работы генов фага %, когда фаг вызывает лизис клетки или, наоборот, переходит в латентную форму. Первые несколько стадий регуляции генов при заражении фагом одинаковы в обоих случаях. На критическом этапе один из фаговых регуляторных белков улавливает , в каком состоянии находится хозяйская клетка, и определяет, как будут развиваться дальнейшие события. Этот этап принятия решения - показательный пример того, как условия окружающей среды влияют на регуляцию работы генов в ходе развития. Последовательность регуляторных событий каждого пути развития после принятия решения представляет собой каскадный механизм, когда ряд генов последовательно включается и выключается в соответствии с предопределенной программой. [c.19]

    Белок "чувствует" состояние клетки и "определяет" направление развития ситуации. Порядок регуляторных событий представляет каскадный механизм, т.е. ряд генов последовательно включаются и выключаются в соответствии с предопределенной программой. Высокая эффективность работы механизма переключения генов связана с его кооперативными свойствами. Это объясняет, почему небольшие изменения концентрации регуляторного белка надежно контролируют экспрессию генов. [c.18]

    Краткосрочный и долгосрочный механизмы регулирования активности мембранных ферментов в реальных условиях in vivo дополняются многочисленными компонентами функциональным сопряжением одного фермента с другими, наличием каскадных механизмов регуляции, модуляцией активности белков мембран в результате воздействия физических агентов. В целом процесс регулирования функционирования векторных белков-ферментов биомембран рассматривается как сложное-вза-имодействие подсистем универсального регуляторного механизма, обеспечивающее структурно-функциональную интеграцию компонентов мембран и поддержание клеточного гомеостаза (рис. 25). Универсальность основных регуляторных механизмов векторных ферментов биомембран обусловлена сходством их [c.95]

    Активация КФ под влиянием адреналина была замечена задолго до открытия цАМФ-зависимой протеинкиназы. В опытах in vivo и на очищенных препаратах КФ [6, 83, 84] это наблюдение привело к тому, что был открыт фермент, присутствующий в следовых количествах в препаратах КФ [7, 21, 23]. Фермент был выделен в гомогенном состоянии из ряда источников. Он состоит из двух типов субъединиц регуляторной, связывающей цАМФ, и каталитической, на которой локализован активный центр. При образовании комплекса цАМФ с регуляторной субъединицей молекула фермента диссоциирует с выделением свободной каталитической субъединицы, способной фосфорилировать КФ [3,85]. Влияние адреналина на превращение ФБ в ФА в скелетной мышце связано с увеличением концентрации внутриклеточного цАМФ. Образовавшаяся при этом цАМФ-зависимая протеинкиназа, фосфорилируя КФ, переводит ее в активированную форму, в свою очередь фосфорилирую-щую ФБ, вызывая тем самым активацию гликогенолиза. Таким образом, адреналин стимулирует деградацию гликогена посредством каскадного механизма, включающего активацию нескольких ферментных систем (рис. 1). [c.60]

    В результате этого регуляторного каскада при ограниченном поступлении активированных атомов азота аденилирование ингибируется, а деаденилирование стимулируется. Глутамин-синтетаза становится менее чувствительной к кумулятивному ингибированию по типу обратной связи, и поступление глутамина соответственно увеличивается. Почему для регуляции этого фермента используется каскадный механизм Одно из преимуществ этого механизма состоит в том, что он усиливает сигналы, как, например, при свертывании крови (разд. 8.17) или при регуляции метаболизма гликогена (разд. 16.17). Еще одна причина состоит, видимо, в том, что существенно возрастает возможность аллостерического контроля, так как каждый фермент каскада становится независимым объектом регуляции. Для интеграции метаболизма азота в клетке необходимо воспринимать и перерабатывать большое количество сигналов. Возможности одного белка в этом смысле ограничены, даже если молекула настолько чувствительна, как молекула глутамин-синтетазы Возникновение каскадной регуляции обеспечило много дополнительных регуляторных участков и позволило тонко настраивать поток азота в клетке. [c.247]


Смотреть страницы где упоминается термин Каскадный механизм регуляторный: [c.51]    [c.6]   
Биохимия Т.3 Изд.2 (1985) -- [ c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Каротиноид, синтез Каскадные регуляторные механизмы

Усиление регуляторных сигналов при помощи каскадного механизм



© 2025 chem21.info Реклама на сайте