Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вирусы лизис клетки

    Как показано на рнс. 15-22, хромосома обычно подразделяется на четыре оперона короткий — продуцирующий репрессор, ранний левый, ранний правый и поздний ). Ранние опероны детерминируют в основном синтез ферментов, обеспечивающих репликацию и рекомбинацию, а также синтез регуляторных белков. Поздний оперон связан с синтезом белков, необходимых для организации вирусных частиц он должен транскрибироваться с более высокой скоростью, которая обеспечивается Продуктом гена Q. В пределах позднего оперона гены от А до F участвуют в упаковке ДНК фага Айв образовании головок, тогда как гены от 2 до / обеспечивают синтез и сборку отростков. Гены S -а. R продуцируют белки, вызывающие разрушение мембраны бактерии-хозяина и лизис клетки. На последних стадиях фазы литического развития большая часть ранних генов выключается другим репрессором фага X (кодируемым геном его). Из сказанного видно, что регуляция транскрипции даже у вирусов может представлять собой достаточно сложный процесс. [c.261]


Рис. 21.9. Вектор на основе HSV-ампликон-плазмиды. Точка инициации репликации HSV (ori HSV), сигнал упаковки HSV и терапевтический ) ген (ТГ) встраивают в плазмиду Е. соН (HSV-ампликон-плазмида). Проводят трансфекцию клетки-хозяина, инфицированной вирусом-помощником HSV, полученной плазмидой. ДНК ампли-кон-плазмиды реплицируется по типу катящегося кольца . 10 амп-ликонов, соответствующих полноразмерному геному HSV, упаковываются в HSV-капсид, который поставляет вирус-помощник HSV. Геном этого вируса не упаковывается. HSV-частицы, несущие множество копий терапевтического гена, высвобождаются при лизисе клетки и используются для трансдукции нейронов. Рис. 21.9. Вектор на основе HSV-<a href="/info/1403409">ампликон</a>-плазмиды. <a href="/info/200587">Точка инициации репликации</a> HSV (ori HSV), сигнал упаковки HSV и терапевтический ) ген (ТГ) встраивают в плазмиду Е. соН (HSV-<a href="/info/1403409">ампликон</a>-<a href="/info/33227">плазмида</a>). Проводят <a href="/info/1345937">трансфекцию клетки</a>-хозяина, инфицированной <a href="/info/1310546">вирусом-помощником</a> HSV, полученной плазмидой. ДНК ампли-кон-плазмиды реплицируется по типу катящегося кольца . 10 амп-ликонов, соответствующих полноразмерному геному HSV, упаковываются в HSV-<a href="/info/357340">капсид</a>, который поставляет <a href="/info/1310546">вирус-помощник</a> HSV. Геном этого вируса не упаковывается. HSV-частицы, несущие множество копий терапевтического гена, высвобождаются при <a href="/info/1286869">лизисе клетки</a> и используются для трансдукции нейронов.
    Белковая оболочка надежно защищает нуклеиновую кислоту вируса от действия нуклеаз она также способна внедряться в клеточную стенку бактерий, после чего ДНК обнажается и проникает через клеточную мембрану. В результате попадания вирусной ДНК или РНК в клетку останавливается синтез нуклеиновых кислот клетки-хозяина (всего через несколько минут) и начинается синтез вирусных макромолекул. После заражения клетки-хозяина размножение вируса может привести к лизису клетки кроме того, ДНК вируса может включаться в ДНК клетки и вызывать трансформацию клетки, в том числе и в раковую клетку. [c.41]

    Вирусы — это инфекционные частицы, которые состоят из молекул ДНК или РНК они образуют геном вируса), упакованных в белковый капсид у некоторых вирусов капсид окружен еще и мембранной оболочкой, основу которой составляет липидный бислой. Строение вирусного генома и способы его репликации у разных вирусов сильно варьируют. Вирус способен размножаться только в клетке-хозяине, используя для этого ее генетические механизмы. Обычно вирусная инфекция завершается лизисом инфицированной клетки и высвобождением потомства вируса. Однако некоторые вирусы могут включаться в хромосому клетки, не вызывая лизиса последней. Здесь вирусные гены (в форме провируса) реплицируются вместе с генами хозяина. Считается, что многие вирусы [c.325]

    Вирусы бактерий называются бактериофагами, вирусы актиномицетов — актинофагами. Слово фаг в переводе с греческого означает пожирающий. Размножение фага возможно только внутри живой микробной клетки, на ранних стадиях ее роста. Сначала фаг адсорбируется на поверхности микробной клетки, затем проникает внутрь ее, где размножается, после чего происходит лизис клетки и освобождение активных фаговых частиц. Период взаимодействия фага с клеткой длится от нескольких минут до нескольких часов. Фаги широко распространены в природе. Они встречаются повсюду, где есть культуры микроорганизмов, которые они способны лизировать (в почве, водоемах, кишечнике человека и животных и т. д.). Некоторые фаги лизи-руют только один вид какого-либо микроорганизма, другие — несколько близких видов. [c.11]


Рис. 21.10. Образование HSV-вектора с помощью рекомбинации. Проводят котрансфекцию кдетки-хозяи-на плазмидой, которая содержит терапевтический ген, фланкированный последовательностями ДНК из вспомогательных областей HSV-генома, и ДНК HSV дикого типа. HSV-геном реплицируется в клеточно1М ядре по типу катящегося кольца , при этом между фрагментами ДНК HSV, входящими в состав плазмиды, и ДНК HSV дикого типа может произойти рекомбинация (штриховая линия). Молекулы ДНК HSV дикого типа и рекомбинантного HSV упаковываются в вирусные частицы, высвобождающиеся из клетки после лизиса. Вирусы размножают и проводят скрининг бляшек для идентификации рекомбинантных HSV. Полученные HSV-векторы хранят в условиях, исключающих их загрязнение HSV дикого типа. Рис. 21.10. Образование HSV-<a href="/info/24990">вектора</a> с помощью рекомбинации. Проводят <a href="/info/1384733">котрансфекцию</a> кдетки-хозяи-на плазмидой, которая содержит терапевтический ген, фланкированный последовательностями ДНК из вспомогательных <a href="/info/3352">областей</a> HSV-генома, и ДНК HSV дикого <a href="/info/50308">типа</a>. HSV-геном реплицируется в <a href="/info/221325">клеточно</a>1М ядре по типу катящегося кольца , при этом между фрагментами ДНК HSV, входящими в состав плазмиды, и ДНК HSV дикого <a href="/info/50308">типа</a> может произойти рекомбинация (штриховая линия). Молекулы ДНК HSV дикого <a href="/info/50308">типа</a> и рекомбинантного HSV упаковываются в <a href="/info/1401121">вирусные частицы</a>, высвобождающиеся из клетки после лизиса. Вирусы размножают и проводят <a href="/info/591295">скрининг</a> бляшек для <a href="/info/1409420">идентификации рекомбинантных</a> HSV. Полученные HSV-векторы хранят в условиях, исключающих их загрязнение HSV дикого типа.
    В результате размножения вируса в инфицированной клетке происходит ее лизис. [c.222]

    Элементарные живые частицы, измеряемые в миллионных долях микрона (миллимикронах), называются вирусами. В переводе с латинского вирус означает яд. От бактерий вирусы отличаются тем, что не растут на искусственных питательных средах. Размножение их возможно только в клетках других организмов (человека, животных, растений). К вирусам относятся возбудители оспы, бешенства, гриппа и других заболеваний. Различные вирусы имеют разную форму (шарообразную, прямоугольную, нитевидную и др.) и довольно сложное строение. Вирусы могут поражать микроорганизмы, вызывая их растворение — лизис. [c.11]

    Размножение вируса не приводит к. лизису клетки. Нуклеокапсид образуется внутри клетки, перемещается затем к плазматической мембране и выходит наружу, одетый в оболочку из этой мембраны. Интегрированная ДНК ретровируса реплицируется вместе с геномом клетки-хозяина и поэтому содержится в каждой клетке опухоли (саркомы). Опухолевый рост клеток обусловлен экспрессией вирусного гена 5гс . Этот ген кодирует белок, который, по-видимому, представляет собой киназу, фосфорилирующую белки. Можно думать, что эта киназа участвует в преобразовании дифференцированной клетки в клетку эмбрионального типа. [c.154]

    Репликация вируса осуществляется в цитоплазме. Сборка клеток хозяина, заполнение капсида также осуществляются в цитоплазме высвобождение вируса сопровождается лизисом клетки. [c.124]

    Репликация осуществляется в цитоплазме репродукционные процессы обычно занимают не более нескольких часов и устойчивы к действию ингибиторов синтеза клеточной РНК. Первая стадия (после депротеинизации) — синтез +РНК и вирусных белков, которые транслируются в единую полипептидную нить. Сборка клеток хозяина, заполнение капсида также осуществляются в цитоплазме. Выход вируса сопровождается лизисом клетки. [c.132]

    Вирусы впервые были описаны как болезнетворные агенты, которые размножаются только в клетках и имеют настолько малые размеры, что способны проходить через ультратонкие фильтры, задерживающие самые мелкие бактерии До появления электронного микроскопа природа их оставалась неясной, хотя уже тогда высказывалось мнение, что это, возможно, просто гены, которые приобрели способность переходить из одной клетки в другую. В 1930-х годах использование ультрацентрифуги сделало возможным отделение вирусов от компонентов клетки-хозяина. В результате уже в начале 1940-х годов стало более или менее ясно, что все вирусы содержат нуклеиновые кислоты. Это укрепило исследователей в мысли, что вирусы и генетический материал выполняют сходные функции. Подтверждение такой точки зрения было получено при изучении вирусов бактерий (бактериофагов). В 1952 г. удалось показать, что в клетку бактерии-хозяина проникает одна только ДНК бактериофага (без его белка) и что именно она инициирует здесь процесс репликации, приводящий в конечном счете к появлению в инфицированной клетке нескольких сотен дочерних вирусных частиц. Таким образом, вирусы можно рассматривать как генетические элементы одетые в защитную оболочку и способные переходить из одной клетки в другую. Размножение вирусов само по себе часто оказывается летальным для клетки, в которой оно происходит. Многие вирусы разрушают инфицированную клетку (вызывают ее лизис), что и дает возможность потомству вируса переходить в соседние клетки. Клинические симптомы вирусной инфекции во многих случаях отражают именно эту цитолитическую способность вируса Высыпание при [c.314]

    Размножению вирусов предшествует их внедрение в клетку-хозяина и удаление белков оболочки и (или) капсида. Проникшая в клетку нуклеиновая кислота перемещается в те участки клетки, где происходит ее репликация, транскрипция в РНК (если в этом бывает необходимость) и затем трансляция в белки. И наконец, на последнем этапе вновь синтезированные компоненты потомства собираются в зрелые вирусные частицы, покидающие затем клетку-хозяина. Выход зрелых частиц в одних случаях происходит в результате лизиса клетки, [c.225]

    Вирусы распознаются по последствиям своего развития в клетках хозяина. Они разрушают целые комплексы клеток и вызывают поражения тканей, что ведет к появлению некротических пятен или зон лизиса (рис. 4.1). Обычные хозяева вирусов-это растения, животные и микроорганизмы. [c.134]

    Литический цикл (Lyti y le) Размножение вируса в клетке-хозяине, оканчивающееся лизисом клетки. [c.552]


    Вначале рассмотрим выражение генов фага Л нри литическом пути. Цель развития - образование многочисленного потомства - достигается путем последовательной транскрипции вирусных генов. Вначале образуются белки, необходимые для репликации и рекомбинации ДНК, затем белки головки и отростка вирусной частицы и белки, необходимые для лизиса клетки-хозяина. Чрезвычайно важное значение имеет строгая очередность этих событий преждевременное разрушение клетки-хозяина для вируса, конечно, невыгодно. Выражение генов при литическом развитии происходит в три стадии предраннюю, раннюю и позднюю (рис. 28.18). На предранней стадии начинается синтез РНК с двух промоторов - ж Р . Один из образующихся при этом транскриптов служит матрицей для синтеза белка N, которому принадлежит важнейшая регуляторная роль. В отсутствие белка N предранние транскрипты заканчиваются на одном из двух участков терминации. Белок N препятствует терминированию транскрипции в этих участках и обеспечивает та- [c.121]

    Комплексы, атакующие мембраны, после негативного контрастирования имеют на электронных микрофотографиях характерный вид они образуют водные поры, пронизывающие мембрану (рис. 18-44). По этой причине, а также благодаря нарушению структуры близлежащего липидного бислоя мембрана становится легко проницаемой. Поскольку малые молекулы могут проходить сквозь мембрану около комплексов и через них. а макромолекулы остаются в клетке, нарушается нормальный клеточный механизм контроля водного баланса (см. схему 6-1. т. 1). Поэтому клетка путем осмоса поглощает воду и в результате набухает и лопается. Этот процесс настолько эффективен, что очень небольшое число комплексов, атакующих мембраны (возможно, даже один), может убить эритроцит. Комплексы могут разрушать даже вирус, имеющий оболочку, для которого не характерна большая разность осмотического давления по обе стороны мембраны и который поэтому не подвержен осмотическому лизису вероятно, это происходит из-за дезорганизации мембраны вируса. [c.258]

    Из числа умеренных колифагов наиболее подробно изучен фаг "к. Путем изучения развития вируса в ходе лизиса клетки (использовали целый ряд мутантов с супрессорно-чувствительными, условнолетальными, бессмысленными мутациями, выделенными Кэмпбеллом [60]) в геноме фага X удалось идентифицировать пе менее 18 генов. Этими методами было показано, что гены от Л до F ответственны за функции, связанные с синтезом белка фагового отростка, а гены от G до / отвечают за формирование головки. Ген i кодирует фаговый лизоцим [62]. Все эти гены, таким образом, попадают в категорию поздних генов в отличие от ранних генов , таких, как ген N, детерминирующий репликацию ДНК. Была проделана большая работа по выяснению роли этих различных генов и последовательности их транскрипции. Установлено, что разные гены транскрибируются с одного или с другого конца цепи и транскрипция таким образом идет в противоположных направлениях (фиг. 72) [496]. [c.278]

    Сообщение Д Эрреля вызвало сенсацию среди медицинских микробиологов, поскольку он высказал идеи о роли фагов в развитии естественного иммунитета и об их использовании в борьбе с инфекционными болезнями. Несмотря на такие весьма ошибочные заявления, Д Эррель довольно близко подошел к современному представлению о фагах. С самого начала своих исследований Д Эррель считал, что фаги — это особые невидимые фильтрующиеся, самовоспроизводящиеся вирусы, облигатно паразитирующие на бактериях. В течение двух-трех лет со времени своего открытия он разработал метод точного подсчета, или титрования, фагов, а к 1923 г. он описал их жизненный цикл следующим образом фаговые частицы прикрепляются к поверхности бактерии и затем проникают в клетки, где они размножаются, образуя потомство многих вирусных частиц. После разрушения, или лизиса, клетки эти частицы выходят в окружающую среду вполне готовыми к новому заражению. [c.252]

    Термин инфекционность в том смысле, в каком он употребляется в данном контексте, относится ко всей совокупности событий, происходящих в процессе заражения проникновение инфекционного агента в клетку-хозяина репликация нуклеиновой кислоты, синтез вирусных белков (или белка) оболочки и других вирусоспецифичных соединений созревание вирусных частиц и, наконец, выход вируса из клетки, сопровождаемый или не сопровождаемый лизисом и другими цитоплазматическими изменениями, а также общими симптомами заболевания. Все эти различные биологические и биохимические стороны понятия инфекционности обсуждаются в последующих главах. Здесь же мы хотим обратить внимание читателя лишь на следующее обстоятельство. Биологическая активность вирусных нуклеиновых кислот имеет, как известно, две стороны, а именно матричную активность и активность в качестве переносчика информации. Оказалось, что для изучения этих активностей можно использовать не живую клетку-хозяина, а более простые системы, в частности бесклеточные системы in vitro с использованием очищенных ферментов [187, 344, 348]. Именно благодаря применению таких систем было выяснено, что для выполнения нуклеиновой кислотой отдельных функций, например для синтеза белковой оболочки, не требуется присутствия полной интактной молекулы нуклеиновой кислоты, или всего набора нуклеиновых кислот, или цельной вирусной частицы. Таким образом, используя в эксперименте отдельные фрагменты или компоненты РНК, можно пролить свет на функциональную роль различных частей молекулы нуклеиновой кислоты или комплекса нескольких молекул. О таких исследованиях упоминается в гл. XI, разд. Б. [c.180]

    В любой вирусной инфекции можно вычленить следующие периоды 1) скрытый, или латентный, период, в течение которого инфекционное начало либо совсем не обнаруживается в клетках хозяина, либо проявляется лишь в незначительной степени 2) период, когда содержание РНК и (или) ДНК увеличивается 3) период, когда возрастает содержание белка, причем постепенно начинают преобладать белки оболочки и, наконец, 4) период созревания вирусов. Однако существует и такой период, который у разных вирусов протекает по-разному. Это процесс выхода вируса из клетки. У одних вирусов выход из клетки происходит путем отпочковывания или выпячивания клеточной оболочки, у других — в результате лизиса и смерти клетки. Не исключено, однако, что вирусы в незрелой форме (а возможно, даже и голые нуклеиновые кислоты) тоже способны переходить в инфицированных тканях от клетки к клетке, используя для этого такие органеллы, как, например, плазмодесмы растений. Продолжительность перечисленных пяти фаз обычно зависит от конкретной системы вирус — хозяин. Однако в тех случаях, когда животная клетка инфицируется одной-единственной вирусной частицей, скрытый период может быть самым различным. [c.233]

    Исследования умеренного бактериофага X внесли важный вклад в генетику. Фаг X содержит линейную молекулу ДНК длиной примерно 49 ООО п. п., то есть почти в 10 раз более длинную, чем геном фага фХ174. Фаг X представляет большой интерес, поскольку его генетические регуляторные механизмы довольно сложны. Когда чувствительную бактериальную клетку заражают умеренным бактериофагом, например фагом X (рис. 7.6), возможны два варианта дальнейших событий. В первом случае фаг реплицируется, производит множество потомков и разрушает клетку. Во втором случае фаговая инфекция приводит к лизоге-низации клетки, при этом фаг встраивается в бактериальную хромосому и превращается в пассивный участок бактериального генома. В таком состоянии фаг представляет собой профаг или провирус, реплицирующийся лишь как часть генома хозяина и в таком виде попадающий в дочерние клетки. При этом многие гены фага, потенциально летальные для клетки-хозяина, находятся в неактивном состоянии, или репрессированы. Однако иногда фаг может индуцироваться, переводя клетку на путь лизиса клетка погибает, высвобождая многочисленное потомство фага (рис. 7.6). Таким образом, фаг X служит моделью генетической системы вирус-хозяин. Изучение его функционирования послужило основой для современных представлений об опухолеродных вирусах млекопитающих, способных встраиваться в геном, таких как вирус полиомы и 8У40. В этой главе мы рассмотрим различные типы [c.204]

    Вирусы ПОЛИОМЫ и 8У40 ( Обезьяний вирус 40 ) относятся к группе паповавирусов. Они содержат двухцепочечные кольцевые молекулы ДНК. В эксперименте вирус можно перенести для размножения в клетки тканевой культуры. Размножаясь в некоторых (так называемых пер-миссивных) клетках, вирус вызывает их лизис, и по мере его размножения клетки гибнут. В других (непермиссивных) клетках вирус ведет себя иначе. В этом случае размножение вируса подавляется, и примерно в одной из 10 клеток вирусная ДНК интегрируется в клеточную ДНК. Такое включение вирусной ДНК в геном клетки-хозяина может приводить к опухолевой трансформации. В трансформированной клетке образуется белок (Т-антиген), который запускает репликацию клеточной ДНК, и в результате начинается размножение клеток. Инъекция такого рода трансформированных клеток животным приводит к быстрому образованию опухолей. [c.153]

    В производстве стрептомицина, хлортетрациклина, эритромицина и других антибиотиков, а также энтобактерина — средства борьбы с вредителями растений, ацетона, молочной кислоты и других веществ большую опасность представляют вирусы бактерий — фаги. Это внутриклеточные паразиты, которые, проникая внутрь бактерий или актиномицетов (актинофаги), размножаются, используя для этого клеточные вещества, и приводят клетку к разрушению — лизису. Уже в 1898 г. Н. Гамалея наблюдал лизис бактерий, но только в 1915 г. английский бактериолог Таурт установил, что агент, вызывающий лизис стафилококков, имеет инфекционную природу и не задерживается обычными бактериальными фильтрами. [c.60]

    Исследование дефектного фага Xdg показало, что он способен произвести инъекцию ДНК в чувствительные клетки и вызывает их лизис, но без образования потомства, т. е. без образования новых корпускул фага. Если же одновременно одни и те же чувствительные клетки инфицируются обоими фагами X и Adg, то происходит вегетативное развитие одновременно обоих фагов и в лизате будут присутствовать поровну оба типа фагов. Очевидно, дефектный фаг утратил некоторые цистроны (он потерял около четверти своей хромосомы), управляющие синтезом части белков. При одновременной инфекции клетки обоими вирусами фаг X несет в себе информацию, необходимую для синтеза всех белков, в частности и тех, которые необходимы, чтобы образовать корпускулы Xdg. При одновременном заражении чувствительных клеток фагами X и Xdg до 20% клеток становятся дважды лизогенными одновременно для обоих фагов, т. е. образуют (рис. 137) гетерогеноты такого же типа, как рассмотренные ранее. И здесь фаг X помогает дефектному фагу Xdg, так как сам но себе Xdg лизогенизует не свыше 1 % [c.392]

Рис. 21.8. Вектор на основе аденоассопиированного вируса (ААВ). Проведена котрансфекция клетки-хозяина, инфицированной аденовирусом-помощником, двумя плазмидами, одна из которых содержит терапевтический ген (ТГ), фланкированный инвертированными концевыми повторами (ITR) ААВ, а другая — гены ААВ, ответственные за репликацию гер) и формирование капсида ap), которые находятся под контролем промотора р), и последовательность полиаденилирования (ра). Высвободившиеся после лизиса частицы рекомбинантного ААВ и аденовируса разделяют центрифугированием, а оставшиеся аденовирусные частицы инактивируют нагреванием. Рис. 21.8. Вектор на основе аденоассопиированного вируса (ААВ). Проведена <a href="/info/1384733">котрансфекция</a> <a href="/info/1408663">клетки-хозяина</a>, инфицированной аденовирусом-помощником, двумя плазмидами, одна из которых содержит терапевтический ген (ТГ), фланкированный инвертированными <a href="/info/33238">концевыми повторами</a> (ITR) ААВ, а другая — гены ААВ, ответственные за репликацию гер) и формирование капсида ap), которые находятся под контролем промотора р), и последовательность <a href="/info/33245">полиаденилирования</a> (ра). Высвободившиеся после лизиса частицы рекомбинантного ААВ и аденовируса разделяют центрифугированием, а оставшиеся аденовирусные частицы инактивируют нагреванием.
    Образование цитоплазматического ренрессора подавляет синтез белков фага и создает условия для его существования в форме профага. Одновременно и по той же самой причине вторичное заражение профага тем же вирусом оказывается неэффективным. Присутствие в клетке ренрессора блокирует синтез белков фага, и вторичная инъекция ДНК ни к чему не приводит. В этом и заключается смысл иммунитета лизогенных бактерий к вторичному заражению гомологическим фагом. Мутация цистронов ведающих образованием репрессоров, — они локализованы внутри области с в некотором сегменте im (от слова иммунитет), — может приводить к их ослаблению или полному выведению из строя. Соответствующие штаммы фага потеряют способность к лизогенизации. Следовательно, причины выбора внутри данной генетически однородной культуры между лизисом и лизогенизацией зависят еще от многих факторов и остаются во многом неясными. [c.384]

    Опыт с одиночным циклом размножения четко продемонстрировал общую природу и общую кинетику размножения вирусов бактерий в клет-ках-хозяевах. В результате этого на первый план был выдвинут вопрос фундаментальной общебиологической важности что же происходит внутри зараженной клетки на протяжении латентного периода, во время которого родительская фаговая частица стократно воспроизводит саму себя При рассмотрении этого вопроса прежде всего следует остановиться на том, как именно происходит увеличение числа фаговых частиц внутри зараженной клетки с момента заражения и до момента лизиса. Это можно выяснить с помощью искусственного лизиса, т. е. разрушая зараженные клетки во время латентного периода и определяя инфекционность материала, освобождающегося в результате такого искусственного лизиса. Впервые подобный эксперимент был поставлен в 1948 г. Дёрманом. Результаты этого эксперимента представлены на фиг. 131. [c.261]

    Отделение родительской нуклеиновой кислоты от родительского белка в самом начале инфекционного процесса отражает наиболее характерное свойство вирусов, отличающее их от клеточных форм жизни в своем жизненном цикле вирусы проходят стадию, на которой их наследственное вещество служит единственным материальным звеном, соединяющим два поколения. Поскольку полноценная фаговая частица воспроизводится при помощи одной фаговой ДНК, две основные функции ДНК, гетерока-талитическая и аутокаталитическая, проявляются в случае фагов болез четко, чем в случае бактерий введенная в клетку-хозяина, ДНК родительского фага, во-первых, контролирует, или индуцирует, образование нескольких сотен копий фагового белка, поставляя структурные компоненты головок и отростков для соматического вещества фагового потомства во-вторых, сама она должна реплицироваться и образовать несколько сотен копий, с тем чтобы все потомство фага получило генетический материал. Для изучения этих функций в 1950 г. были начаты следующие эксперименты. Бактерии, зараженные Т-четными фагами, подвергали искусственному лизису на разных стадиях латентного периода и исследовали наличие в лизате таких веществ, которые по своим свойствам могли быть отнесены к предшественникам, или строительным блокам, фагового потомства. [c.266]

    Чтобы ответить на этот вопрос, пришлось перейти к микроорганизмам, у которых в каждом скрещивании можно получить большое число потомков. Бактериофаг Т4-ЭТ0 вирус, инфицирующий и затем убивающий бактерию Es heri hia соИ. Заражение одной бактерии ведет к образованию примерно 100 потомков фага менее чем за 30 мин. Фаги высвобождаются из клетки при лизисе бактерий (выход фага). [c.17]


Смотреть страницы где упоминается термин Вирусы лизис клетки: [c.230]    [c.975]    [c.363]    [c.114]    [c.114]    [c.411]    [c.119]    [c.123]    [c.185]    [c.144]    [c.112]    [c.226]    [c.48]    [c.365]    [c.165]    [c.30]    [c.474]    [c.264]    [c.7]    [c.334]   
Биохимия Том 3 (1980) -- [ c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Клетки лизис



© 2025 chem21.info Реклама на сайте