Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты связывание цинка

    Токсическое действие. Вне зависимости от форм химических соединений К., поступающего в организм, направленность действия и известные механизмы развития интоксикации близки. Уровень токсичности соединений К. зависит от их типа, растворимости, а также от наличия в веществе других биологически активных элементов. Достижение близкого токсического эффекта при введении различных соединений К. связывают в основном с количеством свободных ионов Сё . Существует предположение о биологической конкуренции К. с цинком, которая определяет характер многих изменений в организме под воздействием К., а также протекторное действие цинка при кадмиевой интоксикации. Установлено, что металлы (цинк, селен) модифицируют токсические эффекты К., очевидно, в результате конкуренции за связывание с определенными биологическими субстратами. К. снижает активность пищеварительных ферментов — трипсина и, в меньшей степени, пепсина. В экспериментах установлено, что К. подавляет отдельные звенья иммунной защиты организма. [c.445]


    В рамках классического механизма считается, что при высоком pH связанный с цинком нуклеофильный гидроксил-ион образуется за счет связывания с этим атомом молекулы воды с р/Са = 7 [210, 216]. Известно, что связанный с цинком гидроксил-ион является нуклеофилом и ионизируется в этой области (гл. 2, разд. Б.7.6). Было высказано множество других предположений на этот счет [217—219], но единственными группами в активном центре, которые могут иметь указанный р/Са, являются гистидины. Однако исследование процесса ионизации остатков гистидина с помощью ЯМР выявило несоответствие между активностью фермента и состоянием их ионизации [220]. К тому же результаты измерений ядерных квадрупольных взаимодействий в ферменте, где цинк замещен на кадмий, указывают на ионизацию связанной с металлом молекулы воды с таким же р/Са, какое было найдено из рН-зависимости активности фермента [221], [c.400]

    Значительные трудности встретились при определении соотношения металл — белок в алкогольдегидрогеназе из печени. Имеются сообщения, что этот фермент содержит либо 2 г-атома [97], либо 4 г-атома [107, 108] цинка на 1 моль фермента. Алкогольдегидрогеназа из печени содержит два центра связывания НАДН [109, 110], в то время как фермент из дрожжей содержит четыре центра связывания этого кофермента [Ш]. Недавно обширные исследования [91] пролили свет на эту путаницу в отношении стехиометрии соотношения цинк — белок и было однозначно показано, что содержание цинка в алкогольдегидрогеназе из дрожжей составляет 4 г-атома/моль фермента, однако два из этих атомов цинка играют в большей степени структурную, чем каталитическую роль [91, 107]. Однако при проверке этого вывода изучением связи между содержанием цинка и каталитической активностью были получены противоречивые данные [91, 108]. Эти разногласия не могут быть связаны с разными образцами ферментов, так как изоферменты алкогольдегидрогеназы дрожжей содержат одинаковое количество цинка [ИЗ]. [c.458]

    У человека и животных катион входит в состав более чем 20 ферментов. Роль цинка в составе фермента заключается либо в непосредственном связывании и поляризации субстрата, либо во взаимодействии с ним через связанные молекулы воды или гидроксид-ионы. Случаи острого отравления цинком отмечаются главным образом на предприятиях цветной металлургии и при употреблении кислых соков, которые хранились в оцинкованной стальной посуде. В целом же цинк относительно малотоксичен. Его ядовитость связана главным образом с присутствующим в нем кадмием. [c.569]

    Р —0,1—2,0%. В составе отдельных белков встречаются в незначительных количествах также железо, иод, медь, цинк, бром, марганец, кальций и другие элементы. Например, в состав белка гемоглобина входит железо, которое играет важную роль в процессе обратимого связывания кислорода при дыхании иод входит в состав гормонов щитовидной железы медь входит в состав ферментов, участвующих в окислительных процессах, и т. д. [c.6]


    Другой метод исследования заключается в использовании оптически неактивных катионных красителей, при связывании которых со спиралью поли-Ь-глутаминовой кислоты появляется сильный эффект Коттона. При этом кривая дисперсии пересекает линию нулевого вращения вблизи полосы поглощения красителя (фиг. I). Для поли-О-глутаминовой кислоты также можно получить подобный, но противоположный по знаку, эффект Коттона, который исчезает при переходе от спирали к хаотической конформации, несмотря на то что краситель остается связанным с макромолекулой. Белки, в состав которых входят гемогруппы, содержащие железо (миоглобин, гемоглобин, ката-лаза, пероксидаза), обладают своим собственным красителем , и в их спектрах наблюдается эффект Коттона в видимой области, т. е. в области поглощения гема. При денатурации этот эффект исчезает, но поглощение в видимой области при этом сохраняется. При добавлении оптически неактивного восстановленного никотинадениндинуклеотида к алкогольдегидрогеназе из печени (ферменту, содержащему цинк) наблюдается эффект Коттона в области поглощения нуклеотида. Однако в этом случае эффект Коттона обусловлен, по-видимому, асимметрией связывающей поверхности фермента, а не асимметрией спирали. Аналогичным примером могут служить комплексы оптически активных аминокислот (не поглощающих видимого света) с медью. В полосе поглощения медных комплексов, уже находящейся в видимой области, наблюдается эффект Коттона, индуцируемый аминокислотами. [c.294]

    Архитектура иммуноглобулина может служить основой для синтеза in vitro пептидов с заданными связывающими свойствами. Для теоретических и практических исследований может оказаться крайне полезным синтез in vitro полипептидной цепи с определенной специфичностью и сродством к данному соединению. Один из возможных путей может начаться с природной или синтетической области VlIVh без гипервариабельных петель в качестве остова. Путем включения подходящих последовательностей на место гипервариабельных сегментов можно затем сформировать специфичный центр связывания рассматриваемого лиганда без нарушения процесса свертывания и стабильности остова [498]. Пример Си —Zn -содержащей пероксид-дисмутазы [286] можно рассматривать как. природный прецедент этого метода пептидной инженерии. В этом случае геометрия координации атомов металла в активных центрах имеет очень много общего с соответствующими фрагментами кристаллических структур медь-имидазольных и цинк-имидазольных. комплексов [661]. Таким образом, обе основные особенности этогО фермента, структура иммуноглобулина и комплекс металла, могуг быть воспроизведены химиками-органиками. [c.246]

    Недавно были опубликованы очень важные результаты дальнейших исследовании, касающихся роли кальция в термостабильности термолизина (Dahlquist et al., 1976). Показано, что избыток ионов Са + стабилизирует нативный голофермент, препятствуя тому, что, по-видимому, является кооперативным структурным переходом, приводящим в конечном счете к автолизу фермента при температурах выше 50°С. Подобным стабилизирующим действием не обладают ни цинк (присоединяющийся к участку, отличному от участков связывания четырех ионов Са2+), ни тербий (присоединяющийся к двойному участку связывания Са +). Если тербий присоединяется не к двойному участку связывания Са +, а к другим участкам молекулы, то при этом также наблюдается ее стабилизация, что навело авторов иа мысль о вовлечении в переход, вызывающий автолиз фермента, участка молекулы, отличного как от активного центра, так и от двойного участка связывания Са +. При условии, что ионы тербия прочно присоединены к двойному участку связывания Са +, удаление двух других ионов Са + из соответствующих участков приводит к необратимому изменению фермента, сохраняющего лишь около 40% исходной каталитической активности. Однако измененный таким способом термолизин денатурируется при низкой температуре и при нагревании не стабилизируется ионами Са +. [c.302]

    Пример 14-Л. Конформация карбоксипептидазы Л. В актив ном центре фермента карбоксипептидазы А содержится тирозин, а в определенном положении вне активного центра — атом цинка. Путем диазотирования и последующего азосочетания можно присоединить арсаниловую кислоту к тирозину, находящемуся в активном центре. Спектр поглощения свободного арсанилазоти-розина значительно изменяется при связывании цинка. Спектр модифицированного белка в растворе такой же, как спектр модельного цинкового комплекса. Значит, белок упакован таким образом, что место расположения цинка и активный центр находятся недалеко друг от друга. Это особенно интересный пример, так как при изучении кристаллов с помощью рентгеноструктурного анализа показано, что цинк не располагается вблизи активного центра. Однако спектр репортерной группы в кристалле белка также свидетельствует об отсутствии связывания цинка. Следовательно, структура белка в растворе не такая, как в кристаллах, используемых для рентгеноструктурного анализа. [c.406]



Смотреть страницы где упоминается термин Ферменты связывание цинка: [c.192]    [c.32]   
Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.372 , c.411 , c.413 ]




ПОИСК





Смотрите так же термины и статьи:

Связывание



© 2025 chem21.info Реклама на сайте