Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидриды неметаллов. Углеводороды

    Гидриды неметаллов. Углеводороды [c.182]

    Эндотермичными среди неорганических соединений являются гидриды неметаллов (силаны, бораны и др.), оксиды азота и хлора, нитриды, карбиды, цианиды, соединения золота и некоторые другие вещества среди органических соединений — это многие углеводороды. [c.17]

    Вещества, которые обычно называют примесями, в сыром ацетилене представляют собой гидриды неметаллов (в случае НзЗ также его производные — дивинилсульфид и меркаптаны) и высшие ацетиленовые углеводороды. Содержа- [c.304]


    Сходство между элементами одной группы становится еще менее очевидным в группе 1УА. Углерод представляет собой неметалл, который почти всегда образует четыре ковалентные связи с другими элементами. Его атомы полимеризуются в цепи, давая так называемые органические соединения, и могут образовывать друг с другом не только простые, но и кратные ковалентные связи. Кремний-неметалл, обладающий некоторыми металлическими свойствами, включая серебристый блеск. Он образует ограниченное число гидридов, называемых силанами, которые являются аналогами углеводородов и имеют общую формулу 51 Н2 + 2- Но такие цепи ограничены предельным значением х = 6, и даже силаны с низкой молекулярной массой реагируют с галогенами и кислородом со взрывом. Кремний образует еще один класс полимеров-силоксаны, в которых атомы 81 связаны через мостиковые атомы кислорода  [c.454]

    В.— самый распространенный элемент в космосе. Он преобладает на Солнце и на большинстве звезд, составляя до половины их массы. В. имеет три изотопа про-тий ( H), дейтерий (О или Н), радиоактивный тритий (1 или Н). Атом В. имеет один электрон. Молекула состоит из двух атомов, связанных ковалентной связью. В соединениях В. положительно и отрицательно одновалентен. В.— хороший восстановитель. При обычных условиях малоактивен, непосредственно соединяется лишь с наиболее активными неметаллами (с фтором, а на свету и с хлором). При нагревании В. реагирует со многими элементами. С фтором реакция идет со взрывом, с хлором и с бромом при освещении или нагревании, а с иодом лишь при нагревании. Соединяется с азотом в присутствии катализатора, образуя аммиак. Практическое значение имеют реакции В. с оксидом углерода СО, при которых образуются углеводороды, спирты, альдегиды и т. д. В. непосредственно реагирует со щелочными и щелочноземельными металлами, образуя гидриды (Ма, Н, СаНз и др.). В. применяется для синтеза ЫНз, НС1, производства метанола (исходя из СО), используется для сварки и резки металлов, для гидрогенизации твердого и жидкого топлива, жиров и различных органических соединений и др Дейтерий и тритий используют в атомной промышленности. [c.32]

    Основная цель большинства этих работ — исследование продуктов и закономерностей их образования с целью разработки технологии получения новых веществ, материалов с новыми интересными свойствами, модификации существующих веществ и материалов. Сюда относятся многочисленные работы по неорганическому синтезу получение окислов азота, озона, окисление хлористого водорода, получение пленок окислов, нитридов, карбидов различных металлов и неметаллов фторирование синтез фторидов кислорода, благородных газов разложение различных веществ и восстановление получение гидридов, нитридов, боридов и др. Еще большее количество реакций исследовано в области органического синтеза реакции превращения углеводородов различных классов и типов, в том числе их разложение и синтез новых, более сложных органических соодинений, получение полимерных пленок, окисление углеводородов получение углеводородов из окиси углерода и водорода — вот далеко не полный перечень процессов, в той или иной мере исследованных в неравновесных электрических разрядах. [c.269]


    В. в обычном состоянии при низких т-рах мало активен, без нагревания реагирует лишь с Fj и на свету с lj. С неметаллами В. взаимод. активнее, чем с металлами. С кислородом реагирует практически необратимо, образуя воду с выделением 285,75 МДж/моль тепла в присут. катализаторов (Pt, Pd, Ni) эта р-ция идет достаточно быстро при 80-130 °С. С азотом в присут. катализатора при повышенных т-рах и давлениях В. образует аммиак, с галогенами-галогеноводороды, с халькогенами-гидриды HjS (выше 600 °С), HjSe (выще 530 °С) и HjTe (выше 730 °С). С углеродом В. реагирует только при высоких т-рах, образуя углеводороды. Практич. значение имеют р-ции В. с СО, при к-рых в зависимости от условий и катализатора образуются метанол или (и) др. соединения. Со щелочными и щел.-зем. металлами, элементами П1, IV, V и VI гр. периодич. системы, а также с интерметаллич. соед. В. образует гидриды. В. восстанавливает оксиды и галогениды мн. металлов до металлов, ненасыщ. углеводороды-до насыщенных (см. Гидрирование). В. легко отдает свой электрон, в р-ре отрывается в виде протона от многих соед., обусловливая их кислотные св-ва. В водных р-рах Н образует с молекулой воды ион гидроксония Н3О. Входя в состав молекул различных соед., В. склонен образовывать со многими электроотрицат. элементами (F, О, N, С, В, С1, S, Р) водородную связь. [c.401]

    Конечные комплексы включают в себя все молекулы и конечные комплексные ионы. Как уже отмечалось, они являются единственными типами комплексов, существование которых возможно и в других агрегатных состояниях. К. молекулярным кристаллам относится большинство твердых органических соединений, а также кристаллические формы большинства сульфидов, галогенидов, гидридов и простых окислов неметаллов. В простейшем типе молекулярного кристалла существуют идентичные неполярные молекулы, удерживаемые связями ван-дер-Ваальса. Строение этих кристаллов (шределяется наиболее плотной упаковкой структурных единиц данной формы, удерживаемых ненаправленными силами. Если молекула имеет приблизительно сферическую форму, то может получаться такой же структурный тип, как и в кристаллах с трехмерными комплексами, причем группа атомов замещает единичный атом (сравнить структуры Sb40g, стр. 476, и алмаза, стр. 495). Если форма молекулы отклоняется от сферической, то структуры становятся более сходными со структурами кристаллов, содержащих одно- или двухмерные комплексы. Крайним примером является углеводород j u Hjaobi который для многих целей можно рассматривать как бесконечную цепочку. Например, порошковые рентгенограммы углеводородов с длинной цепью остаются практически постоянными для молекул, в цепи которых содержится более 130 атомов. Более сложные типы молекулярных кристаллов возникают в тех случаях, когда вместе упакованы разные молекулы, например, как в Hlg-SSg, и когда между некоторыми парами атомов различных молекул существует водородная связь. В последнем случае найдена совершенно отличная и менее плотная упаковка, причем возникает много интересных структурных типов, описанных в гл. VII. [c.166]

    Электроотрпцательность элементов уменьшается с ростом атомного номера С, Si, Ge, Sn, Pb. В отличие от элементов главных подгрупп I, II и III групп контраст между первым элементом (неметаллом углеродом) и последним элементом (металлом свинцом) значительнее. (Напомним, что в главной подгруппе I группы все элементы имеют металлический характер.) Это различие проявляется в уменьшении сродства к водороду, снижении устойчивости гидридов (она чрезвычайно мала для свинца и исключительно высока для углеводородов) и в отношении тетрагалогенидов элементов этой подгруппы к воде. [c.363]


Смотреть страницы где упоминается термин Гидриды неметаллов. Углеводороды: [c.130]    [c.319]    [c.319]    [c.505]    [c.471]   
Смотреть главы в:

Химия -> Гидриды неметаллов. Углеводороды




ПОИСК





Смотрите так же термины и статьи:

Гидриды неметаллов

Неметаллы



© 2025 chem21.info Реклама на сайте