Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной электрический слой неравновесный

    Следующей этап - характеристика отдельных электродов, строения двойного электрического слоя, особенностей протекании окислитель но- восстановитель ных реакций в источниках тока - гальванических элементах, аккумуляторах и топливных элементах.. Затем - переход к неравновесным системам и анализ условий проведения реак-. ций при электролизе, сравнительная характеристика кинетики электрохимических реакций в различных случаях. [c.52]


    Уравнение (УП1.2) называется первым основным уравнением диффузионной кинетики. Оно связывает скорость электродного процесса с распределением концентрации вблизи поверхности электрода. Второе основное уравнение диффузионной кинетики — уравнение Нернста, которое справедливо при протекании электрического тока, так как само электродное равновесие при этом не нарушается. Неравновесным в условиях лимитирующей стадии переноса оказывается некоторый слой раствора (или слой амальгамы) вблизи поверхности электрода, в котором концентрация реагирующих веществ изменяется от значения С в объеме до f — у поверхности (так называемый диффузионный слой, который следует отличать от диффузной части двойного слоя). Чтобы определить потенциал электрода при протекании тока, в уравнение Нернста подставляют концентрацию реагирующего вещества у поверхности электрода. Таким образом, если процесс идет на электроде первого рода, то [c.173]

    Роль электроповерхностных неравновесных сил в различных процессах, вероятно, весьма значительна. Деформация двойного электрического слоя может происходить не только под действием внешнего электрического поля (этот случай будет рассмотрен в разд. 5 настоящей главы), но и при действии конвективных потоков жидкои среды, гравитационного поля, поля центробежных сил, ультразвукового поля, механических вибраций, броуновского движения. В частности, [c.197]

    Строение двойного электрического слоя отражается на термодинамических свойствах равновесных электродных систем. Однако при протекании электрохимических реакций в неравновесных условиях ионы испытывают влияние электрического поля двойного слоя, что приводит к изменению скорости электродного процесса. [c.476]

    Итак, теория и эксперимент показывают, что работа выхода электрона из металла в раствор при заданном электродном потенциале Е не зависит от природы металла. Учитывая этот результат, становится физически понятным, почему и в неравновесных условиях при = onst влияние природы металла на скорость стадии разряда — ионизации может проявляться через энергию специфической адсорбции веществ О и R, через строение двойного электрического слоя, но не через работу выхода электрона. Для экспериментальной проверки этих выводов можно воспользоваться или уравнением для тока разряда, вытекающим из (45.21), [c.272]


    Для объяснения спада тока в разбавленных растворах при переходе через т. н. з. В. Г. Левичем была развита теория неравновесного двойного электрического слоя. Сущность этой теории состоит в том, что поле двойного слоя при отрицательных зарядах электрода замедляет скорость подхода анионов к поверхности металла. Замедленное вхождение анионов в двойной слой (так называемый динамический у х-эффект) должно проявляться тем сильнее, чем больше отрицательный заряд поверхности, т. е. следует ожидать спада тока электровосстановления анионов при переходе через т. н. з. Максимальную плот- [c.280]

    Особенность методов электрохимического анализа состоит в том, что в анализируемую систему не вводятся какие-либо химические реагенты, а используются процессы, связанные с переносом электрических зарядов. При этом аналитический сигнал зависит от одного или нескольких физических параметров равновесного или неравновесного электродного потенциала, потенциала окисления или восстановления, скорости массопереноса вещества в зону реакции на электроде, тока электролиза или количества электричества, пошедшего на него, электропроводности, емкости двойного электрического слоя и др. Природа сигнала, который измеряют соответствующим прибором, и определяет название метода. [c.9]

    Всего легче экспериментально изучать процессы, сопровождающие нарушение контакта однородных тел, при расщеплении кристаллов, например слюды, а нарушение контакта разнородных тел — при отслаивании эластичных пленок от твердых подложек. В обоих случаях результаты испытаний дают значения удельной работы отрыва, а не силы при зтом, как правило, процесс отслаивания идет существенно неравновесно. Случай контакта разнородных фаз приводит, как отметил еще Гельмгольц, к образованию двойного электрического слоя. [c.391]

    В заключение отметим, что, хотя методика экспериментального определения поверхностного натяжения по растворимости имеет под собой довольно прочную основу, применимость уравнения Кельвина к избыточной растворимости небольших ионных кристаллов фактически является только предположительной и не доказана, как в случае капелек жидкости. Термодинамический смысл результатов измерений растворимости в присутствии неоднородного и неравновесного набора кристаллов не вполне ясен. Не разрешен также вопрос о роли других факторов, например двойных электрических слоев, предположительно связанных с поверхностью кристалла. Последний эффект Кнапп [6] (см. также [7]) описывает уравнением [c.269]

    Термодинамика неравновесных процессов представляет собой дальней шее развитие равновесной термодинамики и применима к любым системам при условии, что система находится в слабо неравновесном состоянии, т. е. вблизи состояния полного статистического равновесия. Неравновесная тер модинамика наряду с аксиоматическим термодинамическим методом использует аргументацию на микроскопическом уровне, применяя уравнения механического движения отдельных частиц. В этой главе будут затронуты необратимые процессы, происходящие в пределах двойного электрического слоя. [c.322]

    Искажение кристаллической решетки при электрокристаллизации металла возможно не только за счет включений, но и по другим причинам. В частности, образование неравновесной кристаллической решетки с необычными параметрами может быть результатом того, что восстанавливаемый ион металла, проходя через двойной электрический слой, обладающий высоким градиентом потенциала (10 в см), приобретает большую скорость, которая сразу теряется при вхождении в кристаллическую решетку. [c.274]

    В случае большого падения напряжения в двойном электрическом слое увеличивается средняя энергия тепловых колебаний разряжающихся ионов в момент их разряда и вхождения в кристаллическую решетку, что способствует образованию неравновесной кристаллической решетки. [c.305]

    Физико-механичеокие свойства электролитических осадков являются существенной характеристикой качества покрытий и определяют их применимость в той или иной области техники. Свойства электролитических осадков обусловлены наличием включений в них разнообразных чужеродных частиц, а также степенью необратимости электродного процесса (величиной перенапряжения) при восстановлении ионов металлов. Последнее обстоятельство связано с тем, что восстанавливающийся ион, проходя через двойной электрический слой, имеющий большую напряженность электрического поля (порядка 10 в см), приобретает большую скорость, которую он сразу теряет при вхождении в кристаллическую решетку это приводит к образованию неравновесной кристаллической решетки с измененными параметрами. [c.4]

    Так как величина а,г трудно определима, то для точного расчета движущей силы вторичного зародышеобразования удобнее пользоваться расчетом энергии по формуле (1.370). Причем составляющие энергии взаимодействия могут иметь различные порядки для жидкости и газа. Так, в газе возникает неравновесная электрическая составляющая [87, 90], которая на несколько порядков превышает молекулярную составляющую. Наоборот, если отрыв происходит в жидкой среде, двойной слой может разряжаться настолько быстро, что электрическая составляющая адгезии будет иметь умеренную величину [87, 90]. [c.108]


    Влияние неравновесных электроповерхностных сил. Выше были рассмотрены равновесные поверхностные силы, действующие у межфазной границы и способные препятствовать сближению двух одноименно заряженных частиц. В послед- ие годы Б. В. Дерягин и С. С. Духин проанализировали действие электропо- верхностных сил в системах, в которых имеют место нарушения термодинамического равновесия. Они установили, что деформация двойного электрического слоя, вызванная внешним электрическим полем или конвективным движением жидкости, приводит к образованию такого электрического поля, радиус действия которого часто на несколько порядков превосходит радиус действия не-дефммированного слоя в тех же условиях. [c.197]

    Следует указать на ряд интересных и важных теоретических исследований, проведенных недавно Б. В. Дерягиным и С. С. Ду-хиным по изучению электрофореза и потенциала седиментации . Эти авторы привлекают внимание к неравновесным электропо-верхностным силам, возникающим вследствие деформации двойного электрического слоя при движении взвешенных частиц. Деформированный двойной слой продуцирует электрическое поле, сфера действия которого часто на несколько порядков превышает сферу действия недеформированного двойного слоя в тех же условиях. С. С. Духин указывает на значение возникающих потоков диффузии, проводит их учет для явления седиментационного потенциала при движении твердых частиц и жидких капель в жидкой среде. Движение взвешенных частиц за счет электрического поля, образующегося при диффузии электролита, названо С. С. Духиным диффузиофорезом. Наличие этого процесса было демонстрировано им на примере осаждения глобул латекса. [c.143]

    В электролитической ванне (электролизере, электролитической ячейке) под влиянием приложенного внешнего электрического поля и в замкиутом гальваническом элементе нарушается равновесие, изменяются электрические характеристики системы. Катод (анод) и раствор электролита обмениваются заряженными частицами. Частные токи, отвечающие анодному и катодному процессам, не равны току обмена — количеству электричества, проходящему в е(Диницу времени в условиях равновесия от раствора к электроду и обратно. Состав системы количественно и во многих случаях качественно изменяется. Плотность заряда двойного электрического слоя и потенциалы электродов не равны равновесным значениям и зависят не только от активности веществ, участвующих в электрохимическом процессе, температуры и давления, 1Но и от силы тока. Напряжение на электролизере лри данном токе больше, чем равновесная э. д. с. гальвап ического элемента, в котором осуществляется обратная электрохимическая реакция. В замкнутом, генерирующем ток гальваническом элементе (аккумуляторе) напряжение на клеммах меньше, чем равновесная э. д. с. Если система под током достигает стационарного состояния, не зависящего от времени, то неравновесные потенциалы устанавливаются и принимают стационарные значения. Оцениваются эти поляризационные явлеиня поляризацией электродов и э. д. с. поляризации. [c.200]

    Роль электроповерхностных неравновесных сил в различных процессах, вероятно, весьма значительна. Деформация двойного электрического слоя может происходить не только под действием внешнего электрического поля (этот случай -будет рассмотрен в разд. 5 настоящей главы), но и при действии конвективных потоков жидкой среды, гравитационного поля, поля центробежных сил, ультразвукового поля, механических вибраций, броуновского движения. В частности, выло обнаружено влияние электрического поля, возникающего при оседании мелких частиц, на скорость седиментации. В. Г. Левичем и-А.-Н. Фрумкиным было указано, что вблизи поверхности капли, движущейся в жидкой среде, может возникать электрическое поле диффузионного происхождения. Поляризация ионных слоев, наступающая вследствие деформации двойного электрического слоя, обусловливает проявление дальнодействующих сил притяжения между индуцированными диполями. Наконец, Штауф наблюдал образование периодических структур из непроводящих кол.иоидных частиц, находящихся в переменном электрическом поле. Некоторые из этих эффектов более подробно рассмотрены в гл. IX. [c.197]

    Прямая дорога, по которой движется уже более полутора столетий авангард электрохимии (учение о строении двойного электрического слоя ДЭС) подошел к шаткому мостику (в виде моделей 2-3 параллельных или последовательных конденсаторов), с которого легко свалиться и упасть на другую, отходяшую в сторону, но твердую дорогу. Эта ситуация напоминает математическую область, называемую теорией бифуркаций. Происхождение этого термина вытекает из того факта, что единственное решение, которое имеет система уравнений (система взглядов — в данном случае) При некотором критическом значении параметров достигает так называемой точки бифуркации, начиная с которой для системы открываются новые возможности, приводящие к одному или нескольким решениям. Теория бифуркаций преследует цель для каждой данной задачи найти аналитические выражения в точках бифуркаций и построить приближенные решения для новых ответвлений путей процесса (реакции). В нашем случае — предложить аналитические решения некоторых вопросов строения ДЭС и связанных с ним явлений. В этой книге все внимание будет сконцентрировано только на первой части данной цели, поскольку построение нового ветвления решений — очень длинная и сложная задача, лежащая за пределами книги. Поскольку первая задача поиска бифуркации решений заключается в определении точек бифуркации (точек неустойчивости системы), здесь кратко перечислим только некоторые из них по законам электростатики два незаряженных металла должны иметь и одинаковые потенциалы (в электрохимии два разнородных незаряженных металла в одной и той же среде имеют разные потенциалы) в области неравновесных явлений неопределенный физический смысл имеют понятия безбарьерньтй , безактива-ционный разряды при выделении водорода, неодинаковые коэффициенты переноса, подразумевающие разные доли тока, текущие на анод и катод при одном и том же общем токе во внешней цепи гальванического элемента несовпадение зависимости электрической проводимости раствора от концентрации электролита, рассчитанные по основным законам электрохимии закону Кольрауша и закону разбавления Оствальда и др. [c.4]

    Электрический ток вызывает, как уже было сказано, изменения на поверхности электродов, зависящие от многих факторов и прежде всего от силы тока. Изменение электрического состояния электрода (его потенциала, плотности заряда двойного электрического слоя) под влиянием проходящего через границу раздела электрического тока называется поляризацией электрода. Рассд10т-рим последовательно концентрационную поляризацию и химическую или электрохимическую поляризацию электродов. При поляризации потенциал электрода изменяется по сравнению с тем равновесным. значением, которое он имел в данном растворе прн отсутствии тока. Он может, изменяясь, или оставаться равновесным, отвечающим электрохимическому равновесию электрода с раствором в новых условиях, или становиться неравновесным. В последнем случае имеется перенапряжение. [c.574]

    В работе представлены результаты экспериментального исследования динамического поверхкоотного натяжения я неравновесного электрического потенциала в зависимости от возраста поверхности водных растворов солей, спиртов и ПАВ-БНСН. На основе анализа данных эксперимента иожно сделать предположение о механизме релаксации структуры поверхности растворов у растворов поверхностно-активных веществ скорость релаксации определяется диффузией, у растворов поверхностно-инактивных веществ -образованием двойного электрического слоя и поляризацией водородных связей. [c.223]

    Духиным [179—181] разработаны основы диффузи-онно-электрической теории неравновесных электропо-верхностных сил и электрокинетических явлений. При поляризации двойного слоя, вследствие изменения концентрации ионов вдоль поверхности частицы, возникает дополнительная сила неэлектрической природы, называемая диффузиофоретической составляющей электрофореза, вклад которой в изменение скорости электрофореза соизмерим с релаксационным торможением. [c.83]

    Среди методов и средств, кошримп располагает современная аналитическая химия, электрохимические чкюды анализа (вольтамперометрия, потенциометрия, кулонометрия и др ), или электроанализ, по частоте применения в решении проблем окружающей среды занимают одно из первых мест (4,64 . Особенность этой фуппы методов состоит в том, что аналитический сигнал возникает за счет протекания процессов, связанных с переносом электрических зарядов и определяется одним или несколькими параметрами равновесным или неравновесным электродным потенциалом, потенциалом разложения (восстановления или окисления), током собственно элекфолиза, емкостью двойного э.пектрического слоя и т.д. [c.277]

    Теория неравновесных поверхностных сил диффузионной природы, развитая Б. В. Дерягиным и С. С. Духиным, имеет существенное значение при рассмотрении закономерностей электрокинетических явлений и взаимодействия поляризованных частиц. Учет диффузии и поляризации двойного слоя позволил Б. В. Дерягину и С. С. Духину предсказать новое явление, родственное электрофорезу, — иффузиофорез, заключающееся в движении дисперсных частиц при отсутствии внешного электрического поля под влиянием только перепада концентрации ионов. [c.197]

    Электронная модель ДЭС послужила основой для описания неравновесных процессов кинетики электрохимической реакции выделения водорода и явлений, связанных с электропрово дно стью. Это в свою очередь привело к новым представлениям о механизме электродных реакций и переносе электрического заряда. Изложенные в этой книге представления следует рассматривать лишь как основу общего подхода к вопросам строения двойного слоя. Дальнейшие успехи в этой области должны быть связаны с развитием квантовой статистики, теории межмолекулярных взаимодействий, теории жидкого состояния и других смежных областей знания. [c.5]

    Теория неравновесных поверхностных сил диффузионноэлектрической природы имеет существенное значение для обоснования и уточнения закономерностей электрокинетиче-ских явлений и взаимодействия поляризованных коллоидных частиц. Учет диффузии ионов и поляризации двойного слоя позволил предсказать новое явление, родственное электро-кинетическим, диффузиофорез — движение дисперсных частиц при. отсутствии внещнего электрического поля под влиянием перепада концентрации ионов. Поляризация ионных слоев, наступающая вследствие деформации ДЭС, обусловливает проявление дальнодействующих сил притяжения между индуцированными диполями, чем Германе [126] объяснял ускорение коагуляции суспензий при облучении их ультразвуком. Штауф [127] наблюдал образование периодических структур из непроводящих коллоидных частиц, находящихся в переменном электрическом поле, и рассчитал энергию поляризационного взаимодействия / р  [c.25]


Смотреть страницы где упоминается термин Двойной электрический слой неравновесный: [c.253]    [c.607]    [c.310]    [c.310]    [c.269]    [c.19]    [c.45]    [c.181]    [c.91]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Двойной электрический

Двойной электрический слои

Двойной электрический слой

Неравновесный ЯЭО



© 2025 chem21.info Реклама на сайте