Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ниренберг

    Описанный ниже эксперимент показывает, каким образом был расшифрован генетический код. Раствор ферментов, полученный из бактериальных клеток и добавленный к раствору, содержащему все 20 аминокислот, вызывает синтез полипептидной цепи, состоящей только из остатков аминокислоты фенилаланина, если к нему добавить синтетическую РНК, состоящую из полиурацила (т. е. последовательность iJ-U-U-U-...). Следовательно, кодоном для фенилаланина служит иии, как показано в табл. 15.1. Основную работу по расшифровке генетического кода выполнили американские ученые М. У. Ниренберг, X. Г. Корана и Р. Г. Холли со своими сотрудниками при этом они использовали ферменты, открытые А. Корнбергом и С. Очоа. [c.461]


    М.Ниренберг, С.Очоа, Г. Корана Расшифрован генетический код [c.105]

    Биологическая роль нуклеиновых кислот начала выясняться в конце 40-х — начале 50-х годов, когда впервые было выяснено, что ДНК, взятая у одной разновидности бактерий и введенная в другую разновидность, заставляет последнюю производить потомство с признаками, имеющимися у первой разновидности. Отсюда вытекало, что вместе с ДНК была перенесена наследственная информация — каким-то образом закодированный приказ строить белковые молекулы определенного типа. Эти работы стали исходной точкой быстрого прогресса в области молекулярной генетики , приближающего нас к познанию процесса синтеза белка в клетках, размножения клеток путем деления и в конечном итоге воспроизведения всего сложного животного или растительного организма в том виде, который характерен для родителей этого организма. Подробное обсуждение этих проблем увело бы нас далеко в область биохимии, в общих же чертах роль ДНК и РНК выглядит следующим образом. Молекулы ДНК находятся в клеточных ядрах, они содержат наследственную информацию в виде различной последовательности нуклеотидов. ДНК играет роль матрицы , с которой отпечатываются копии молекул РНК, непосредственно участвующих в синтезе белков. Таким образом, молекулы РНК служат передатчиками от ДНК к местам клетки, где непосредственно осуществляется синтез белка. Роль РНК в процессе синтеза белка была подтверждена опытами, выполненными в начале 60-х годов М. Ниренбергом и Д. Матеи. [c.351]

    Генетический аминокислотный код был полностью расшифрован в 1961—1966 гг. усилиями лабораторий М. Ниренберга, С. Очоа и Г. Кораны. [c.7]

    Из приведенных данных М. Ниренберга становится очевидным, что поли-У, т.е. РНК, гипотетически содержащая остатки только одного уридилового мононуклеотида, способствует синтезу белка, построенного из остатков одной аминокислоты—фенилаланина. На этом основании был сделан вывод, что кодоном для включения фенилаланина в белковую молекулу может служить триплет, состоящий из трех уридиловых нуклео- [c.520]

    Нобелевская премия по физиологии и медицине (1968, совместно с М. У. Ниренбергом и Р. У. Холли). [339] [c.255]

    В 1968 г. Ниренберг н Кораиа, а также Холли, которые первыми определили Нуклеотидную последовательность в транспортной РНК, были удостоены Нобелевской премии. [c.193]

    Представления об общих принципах и осн. св-вах Г. к. были разработаны Ф. Криком в 1957-65. Благодаря работам X. Кораны, X. Маттеи, М. Ниренберга и С. Очоа к 1966 был расшифрован нуклеотидный состав всех кодонов. [c.519]

    Модификации различных групп в полипептидной цепи. Если в синтезе белков участвуют 20 аминокислот генетического кода Ниренберга (Nirenberg), то остается еще не менее 140 аминокислот или их производных, идентифицированных в составе белков различных организмов [174]. [c.44]


    В ряде лабораторий (в частности, в лаборатории С. Бреннера) были получены данные о возможности существования в клетках в соединении с рибосомами короткоживущей РНК, названной информационной (иРНК). Сейчас она обозначается как матричная РНК (мРНК), потому что ее роль заключается в переносе информации от ДНК в ядре (где она синтезируется под действием ДНК-зависимой РНК-полимеразы) до цитоплазмы, где она соединяется с рибосомами и служит матрицей, на которой осуществляется синтез белка. Эта блестящая гипотеза затем экспериментально бьша доказана в лаборатории М. Ниренберга. При изучении влияния различных фракций клеточной РНК на способность рибосом, выделенных из Е. oli, к синтезу белка было установлено, что некоторые из них стимулировали включение С-аминокислот в синтезируемый полипептид. Добавление синтетического полинуклеотида, в частности полиуридиловой кислоты (поли-У), в белоксинтезирующую систему приводило к включению в синтезирующуюся белковую молекулу единственной аминокислоты -фенилаланина. Поли-У вызывал синтез в бесклеточной системе необычного полипептида полифенилаланина. Таким образом, искусственно синтезированный полирибонуклеотид, добавленный к препаратам рибосом, включавшим известные к тому времени факторы белкового синтеза и источники энергии, вызывал синтез определенного, запрограммированного полипептида. [c.519]

    Эти опыты открыли возможность для экспериментальной расшифровки всего генетического кода, при помощи которого информация от РНК передается на синтезируемый белок. Последовательность нуклеотидов РНК реализуется в специфической последовательности аминокислот синтезируемой полипептидной цепи. Опыты М. Ниренберга свидетельствуют также о том, что не рибосома и не рибосомная рРНК являются матрицей, на которой синтезируются специфические белки, а эту роль выполняют поступающие извне матричные РНК. Итак, ДНК передает информацию на РНК, которая синтезируется в ядре и затем поступает в цитоплазму здесь РНК выполняет матричную функцию для синтеза специфической белковой молекулы. Матричная гипотеза белка, как и других полимерных молекул ДНК и РНК (см. ранее), в настоящее время получила подтверждение. Ее правомочность была доказана в экспериментах, которые обеспечивали точное воспроизведение первичной структуры полимерных молекул. Этот [c.519]

    Универсален ли генетический код Действуют ли аналогичным образом одинаковые кодоны в различных организмах Ответ на этот вопрос положителен. Поли-У стимулирует включение Фен в полипептидную цепь в бесклеточных системах, полученных из клеток млекопитающих и водорослей. То же относится к другим синтетическим полинуклеотидам (см. [5]). Три-нуклеотидная техника Ниренберга была применена к бесклеточ-ным системам, полученным из клеток амфибии Xenopus laevis и морской свинки, и привела к тем же результатам [110]. Меняется, по-видимому, лишь относительное участие различных кодонов для одной и той же аминокислоты, но кодовый словарь остается тем же, что и для Е. oli. [c.587]

    Наиб, крупные достижения М. б. расшифровка структуры белков и нуклеиновых к-т (М. Перутц, Дж. Кевдрю, Дж. Уотсон, Ф. Крик, У. Гилберт) создание адапторной теории белкового синтеза (Ф. Крик) и теории регуляции синтеза белков в бактериях (Ф. Жакоб, Ж. Моно) открытие транспортной и матричной РНК, расшифровка генетич. кода (М. Ниренберг, G. Очоа) открытие обратной транскрипции (X. Темин, Д. Балтимор), прерывистой структуры генов и механизма созревания матричных РНК у эукариот развитие методов генной инженерии (П. Берг, [c.347]

    Вскоре в лабораториях М. Ниренберга, С. Очоа и Г. Хорана, пользуясь этими искусственно синтезированными мРНК, были представлены доказательства не только состава, но и последовательности триплетов всех кодонов, ответственных за включение каждой из 20 аминокислот в белковую молекулу. Приводим полный кодовый словарь , т.е. все 64 кодона  [c.521]

    Однако такие опыты еще не дают полной расшифровки кода. Остается неизвестным, какой из трех кодонов АУУ, УАУ или УУА кодирует Тир и т. п. В последующ1 х опытах Ниренберг применил уже не полинуклеотиды, а тринуклеотиды известного строения. В системах образуются комплексы тринуклеотид — тРНК — аминокислота (аминоацил). Синтез полипептида при этом ие идет, но, поскольку тринуклеотид имитирует кодон, образование комплекса позволяет его прочесть. Для этого нужно изучить все тРНК, которые последовательно связываются с ме- [c.277]

    Таким образом, Корана получил две цепи, имитирующие мРНК с известной последовательностью повторяющихся триплетов. Обе цепи вводились в бесклеточную систему, и определялось включение аминокислоты в полипептидную фракцию по методу Ниренберга. Эти элегантные опыты позволили проверить шесть кодонов в одном многостадийном синтезе в соответствии со схемой [c.585]

    Приведем установленный Ниренбергом с сотрудниками и Ко-раной с сотрудниками кодонно-аминокислотный словарь (табл. 9.3), а также обратный аминокислотно-кодонный словарь (та0л. 9.4). [c.585]

    Информация о последовательности аминокислот в полипептидной цепи белка, программируемого информационной РНК, записана в молекуле этой РНК, а следовательно, и в соответствующем участке одной из цепей ДНК, в виде последовательности кодирующих эти аминокислоты тринуклеотидных фрагментов — кодонов. Необходимость как минимум трех нуклеотидов для кодирования каждой из 20 аминокислот, формирующих первичную полипептидную цепь при биосинтезе белков, вытекает из очевидных арифметических соображений ни каждый из четырех нуклеотидов по отдельности, ни 16 мыслимых динуклеотид-ных фрагментов не могут однозначно кодировать 20 аминокислот. Соответствие между 64 кодонами и 20 аминокислотами, участвующими в биосинтезе полипептидных цепей на рибосомах, получило название генетического кода. Первое доказательство самого факта существования генетического кода и первый шаг к его расшифровке были получены в эксперименте Ниренберга и Маттеи. Эти авторы показали, что на рибосомах в присутствии всех компонентов, необходимых для биосинтеза белка, и построенной полностью из фрагментов уридин-5 онофос-фата полиуридиловой кислоты в качестве информационной РНК, синтезируется полифенилаланин. Отсюда следовало, что фенилаланин кодируется несколькими, скорее всего тремя остатками уридиловой кислоты, т. е. кодоном для фенилаланина является тринуклеотид ШШ (в этом параграфе в табл. 5.2 символы межнуклеотидных фосфатов или заменяющие их черточки опущены). [c.172]


    Само название нуклеиновые кислоты (от лат. nu leus — ядро) показывает, что открыты они были как составная часть клеточного ядра, в котором действительно присутствуют оба класса нуклеиновых кислот — ДНК и РНК. Основным местом локализации ДНК являются структуры клеточного ядра — хромосомы, в которых ДНК находится в виде комплексов с белками — дезоксирибонуклеотидов. ДНК ( 1% от общего количества) также обнаружена в митохондриях всех типов эукариотических клеток и в хлоропластах растительных клеток. В структуре ядерной ДНК заложена информация о видовых специфических признаках, которые определяют характер данной клетки и всего организма и передаются по наследству. В цитоплазме клеток имеются значительные количества РНК, участвующие в реализации генетической информации. Важными открытиями в изучении нуклеиновых кислот, удостоенными Нобелевской премии, явились установление пространственной структуры ДНК Дж. Уотсоном, Ф. Криком и М. Уилкинсом, ферментативный синтез в бесклеточной системе биологически активной ДНК, осуществленный А. Корн-бергом и С. Очоа, блестящие исследования М. Ниренберга, Р. Холи и X. Корана, послужившие предпосылкой для расшифровки генетического кода. [c.171]

    Информация, заложенная в ДНК и РНК, реализуется в процессе синтеза белка. Механизмы передачи информации от ДНК на РНК понятны и очевидны, так как цепь нуклеотидов характерна для обеих структур, а матричный синтез предусматривает полную идентичность их последовательностей. Но каким же образом передается информация от РНК, содержащей всего четыре нуклеотида, на белок, содержащий 20 различных аминоьсислот Если бы каждый нуклеотид передавал информацию на синтез одной аминокислоты, то всего кодировалось бы 4 аминокислоты. Не может код состоять из двух нуклеотидов, так как в этом случае можно было бы охватить не более 16 аминокислот (4 = 16). Работами М. Ниренберга и соавторов было установлено, что для кодирования одной аминокислоты требуется не менее трех последовательно расположенных нуклеотидов, называемых триплетами или кодонами. При этом между отдельными кодонами нет промежутков, и информация записана слитно, без знаков препинания. Число сочетаний 4 дает основание полагать, что 20 аминокислот кодируются 64 кодонами. Экспериментально установлено, что таких кодонов меньше, всего 61. Оставшиеся три кодона не несут в себе информации, однако два из них используются в качестве сигналов терминации. Выявлена также интересная особенность взаимодействия кодона с антикодоном. Оказалось, что первое и второе азотистые основания кодона образуют более прочные связи с комплементарными основаниями антикодона. Что же касается третьего основания, то эта связь менее прочная, более того, основание кодона может спариваться с другим, не комплементарным основанием антикодона. Этот феномен называют механизмом неоднозначного соответствия или качания. В соответствии с этим урацил антикодона может взаимодействовать не только с аденином, но и с гуанином кодона. Гуанин антикодона способен связываться не только с цитозином, но и с урацилом кодона. Это указывает на возможность нескольких кодонов кодировать одну и ту же аминокислоту. И действительно, было установлено, что ряд аминокислот кодируется двумя и более антикодонами (табл. 29.1). Из таблицы видно, что только две аминокислоты — метионин и триптофан — кодируются при помощи одного кодона. Число кодонов для остальных аминокислот варьирует от двух (для аргинина, цистеина и др.) до шести (для лейцина и серина). Тот факт, что одной и той же аминокислоте соответствует несколько кодонов, называется вырожденностью [c.462]


Библиография для Ниренберг: [c.510]    [c.606]   
Смотреть страницы где упоминается термин Ниренберг: [c.347]    [c.731]    [c.193]    [c.194]    [c.769]    [c.781]    [c.527]    [c.14]    [c.15]    [c.57]    [c.37]    [c.500]    [c.583]    [c.583]    [c.584]    [c.86]    [c.86]    [c.37]    [c.297]    [c.420]    [c.37]    [c.156]    [c.731]    [c.364]    [c.391]   
Проблема белка (1997) -- [ c.527 ]

Биоорганическая химия (1987) -- [ c.419 ]

Проблема белка Т.3 (1997) -- [ c.527 ]

Генетика с основами селекции (1989) -- [ c.394 ]




ПОИСК







© 2025 chem21.info Реклама на сайте