Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Код генетический кодирование аминокислот

    Даже после того как триплетная природа генетического кода стала очевидной, все еще оставалось много нерешенных вопросов. Используют ли клетки все 64 возможных кодона Если да, то используются ли Все они для кодирования аминокислот или же некоторые кодоны предназначены для других целей Сколько кодонов определяют одну аминокислоту Универсален ли код для всех организмов или же каждый организм использует свой код Как можно расшифровать код Несмотря на сложность всех этих вопросов, на каждый из них удалось получить однозначный ответ. [c.193]


    Генетический код — это определенная последовательность азотистых оснований нуклеотидов данного гена, соответствующая последовательности аминокислот в белке. Каждая аминокислота кодируется тремя азотистыми основаниями, расположенными в определенной последовательности — триплетом, который называется кодоном. Большинство аминокислот, кроме метионина и триптофана, может кодироваться несколькими кодонами. Кодоны 20 аминокислот представлены в табл. 17. Указанные кодоны различаются только третьим азотистым основанием. Например, кодирование аминокислоты аланина осуществляется четырьмя триплетами нуклеотидов — ГЦУ, ГЦЦ, ГЦА, ГЦГ. Главную роль при узнавании аминокислоты играют первые два основания. Не все кодоны кодируют аминокислоты. Некоторые из них служат "стартовыми" сигналами, запускающими синтез полипептидной цепи белка, как, например, АУГ — кодон метионина. Другие кодоны, например [c.220]

    Еш,е до того как была окончательно установлена триплетная природа кодонов, Крик и его сотрудники, остроумно использовав мутации со сдвигом рамки, доказали, что генетический код действительно составлен из нуклеотидных триплетов. Рассмотрим, что произойдет при спаривании двух штаммов бактерий, каждый из которых несет мутацию со сдвигом рамки (например, делецию —1). В результате генетической рекомбинации могут образоваться мутанты, содержаш,ие обе мутации со сдвигом рамки. Однако распознать такие рекомбинанты будет трудно, так как (согласно практически любой теории кодирования) они по-прежнему будут продуцировать полностью дефектные белки. Крику и его сотрудникам удалось, однако, ввести в тот же ген третью мутацию со сдвигом рамки того же типа и наблюдать, что рекомбинанты, несуш,ие все три делеции (или вставки), были способны синтезировать, по крайней мере частично, активные белки. Это объясняется просто. Делеции одного или двух нуклеотидов полностью инактивируют ген, тогда как при делеции трех нуклеотидов, расположенных в пределах одного гена и близко друг от друга, ген укорачивается лишь на три нуклеотида. В гене будет содержаться в этом случае лишь небольшая область с измененными кодонами. Кодируемый белок будет нормальным, за исключением небольшого участка, в котором некоторые из аминокислот будут заменены, а одна будет полностью отсутствовать. Мы уже знаем, что в большинстве белков полностью инвариантна лишь сравнительно небольшая доля аминокислот. Таким образом, очень часто ген, в котором модифицирована небольшая область, может синтезировать функционально активные продукты при условии, что не произошло сдвига рамки считывания. [c.252]


    В заключение следует отметить, что четыре основания, участвующие в составе соответствующих нуклеотидов в синтезе РНК, могут образовать 64 различных триплета. Из этих триплетов (кодонов) 61 триплет предназначен для кодирования тех или иных аминокислот (некоторые аминокислоты кодируются более чем одним кодоном), а три кодона являются стоп-кодонами. Шестьдесят четыре генетических кодона являются универсальными для всех живых организмов. [c.543]

    Информационные рибонуклеиновые кислоты (иРНК) при био синтезе белков кодируют 20 различных аминокислот. Однако некоторые аминокислоты, такие как Тгр, Met и His, встречаются гораздо реже остальных. Это объясняют тем, что в генетическом коде имеется только один кодон для Тгр и щесть для Ser. Говорят, что кодирование Ser вырождено. Подобно тому, как языки имеют различное письмо и алфавиты, белки можно рассматривать как биологические -послания, записанные с помощью алфавита, состоящего из 20 аминокислот. Эта аналогия может быть продолжена несколько дальще языки письма, за исключением низкоразвитых языков вычислительных мащин, содержат чрезмерное коли- [c.280]

    Сведения о генетическом коде, представленные в табл. 15.3, нуждаются в дополнительных пояснениях. Прежде всего во многих случаях для кодирования аминокислоты существенны две первые позиции кодона. Более наглядно это представлено в кодовой таблице в виде круга (рис. 15.16). Оказывается, что для восьми аминокислот замена основания в третьем положении кодона будет нейтральной не приведет к замене аминокислотного остатка в белке. А в тех случаях, когда это все же произойдет, такая замена не изменит свойства полярности аминокислоты. Эти особенности кода, по-видимому, отражают его эволюцию. [c.396]

    ВЫВОД, ЧТО, по-видимому, код действительно является триплет-ным, причем кодирование начинается от определенной точки нуклеиновой кислоты. При этом большая часть трехбуквенных комбинаций соответствует определенным аминокислотам и лишь небольшая часть триплетов относится к бессмысленным. Число триплетов равно 4-4-4 = 64, т. е. значительно больше числа аминокислот. Некоторые из них, по-видимому, кодируют одну и ту же аминокислоту, т. е. код является вырожденным. Этот вывод согласуется с обнаружением в настоящее время двух и более типов растворимых РНК, специфичных к одной и той же аминокислоте. Вырожденность генетического кода может способствовать выживанию организма. Действительно, в случае невырожденного кода ошибка при репликации ДНК или при транскрипции должна скорее приводить к появлению бессмысленного триплета, чем в случае вырожденного кода. Следовательно, при невырожденном коде ошибки чаще вызывали бы прекращение синтеза соответствующего белка или образование незаконченных белковых цепей. Напротив, в случае вырожденного кода ошибки должны чаще приводить просто к замене одной аминокислоты на другую, что, как правило, не имеет серьезных последствий. [c.376]

    Для кодирования аминокислот пептидов используют вырожденные кодоны вида NNK или NNS, которые включают все четыре нуклеотида (N) в первом и втором положениях, G или Т(К), а также О или (S) в третьем положении. При таком подходе информация о всех 20 аминокислотах и одном стоп-кодоне заключена в 32 различных кодонах NNK и NNS, а не в 64, как это имеет место в случае природного генетического кода. [c.340]

    Генетическое кодирование аминокислотных последовательностей в белках. Известно, что последовательность аминокислот в каждом белке определяется последовательностью мононуклеотидных строительных блоков в отдельных отрезках линейной молекулы дезоксирибонуклеиновой кислоты (ДНК). Определенные триплеты мононуклеотидов в цепи ДНК, так называемые кодоны, соответствуют определенным аминокислотам. Последовательность кодонов в ДНК коллинеарна аминокислотной последовательности кодируемой ею полипептидной цепи. Участок молекулы ДНК, кодирующий одну полную полипептидную цепь, называется цистроном или геном. В настоящее время накоплено много сведений о белках и их биологической активности на основе исследования молекулярных взаимодействий между генами и белками, поскольку [c.381]

    Как уже было сказано выше, носителем генетической информации является ДНК. Последовательность оснований в ДНК каким-то образом определяет последовательность аминокислотных остатков в белках. К задаче о кодировании двадцати различных аминокислот основаниями четырех типов можно подойти чисто формально, не рассматривая конкретных механизмов белкового синтеза. При таком подходе обычно рассматриваются трехбуквенные (триплетные) коды, поскольку дублетный код позволяет закодировать лишь 4-4=16 аминокислот. [c.375]

    Существует несколько возможных способов возникновения генов, нейтральных с точки зрения отбора. Генетический код обладает избыточностью (см. гл. 4), поскольку для кодирования всего лишь 26 аминокислот имеется 64 различных триплета. Вследствие этого некоторые генные мутации не влияют на белок, кодируемый данным геном, так как мутировавший триплет все еще кодирует ту же самую аминокислоту. Кроме того, считается, что некоторые мутации (например, сопровождающиеся заменой триплета ГУУ, кодирующего валин, триплетом ГЦУ, кодирующим аланин) приводят к синтезу аминокислот с очень сходными свойствами, не влияющими на свойства молекулы белка, а поэтому могут быть нейтральными в селективном отношении. Есть и такие мутации, которые детерминируют замены аминокислот, оказывающие более сильное влияние на синтезируемый фермент, однако, по мнению некоторых генетиков, и эти мутации также могут быть селективно нейтральны. [c.255]


    Для расшифровки генетического кода прежде всего необходимо было выяснить, какое минимальное число нуклеотидов может определять (кодировать) образование одной аминокислоты. Если бы каждая из 20 аминокислот кодировалась одним основанием, то ДНК должна была бы иметь 20 различных оснований, фактически же их только четыре. Очевидно, сочетание двух нуклеотидов также недостаточно для кодирования 20 аминокислот. Оно может кодировать лишь 16 аминокислот (4 =16 сочетаний). Сочетание же трех нуклеотидов дает 64 комбинации (4 ==64 сочетания) и, следовательно, способно кодировать более чем достаточное число аминокислот для образования любых белков. Такое сочетание трех нуклеотидов называется триплетным кодом. В триплетном коде аминокислоты кодируются тройками оснований (например, УУУ, ЦГЦ, АДА и т. д.). Участок цепи ДНК из трех нуклеотидов, определяющий включение в белковую молекулу строго определенной аминокислоты, называется кодоном. [c.151]

    Чему равно кодирующее отношение Поскольку в ДПК имеется четыре вида оснований, то при кодировании одной аминокислоты одним основанием могло бы кодироваться всего лишь четыре аминокислоты. При кодировании одной аминокислоты двумя основаниями кодировалось бы 16 аминокислот (4 4=16), а при кодировании тремя основаниями-64 аминокислоты (4 4 4 = 64). Белки состоят из двадцати аминокислот основного набора. Из этого несложного подсчета было очевидно, что для кодирования одной аминокислоты, видимо, необходимы три или более оснований. Генетические эксперименты показали, что на самом деле одну аминокислоту кодирует группа из трех оснований. Эта группа оснований называется кодоном. [c.68]

    Состав белковых гидролизатов не всегда ограничивается генетически кодированными аминокислотами теперь точно установлено, что тироксин н 3,3, 5-трннодтнронин являются двумя тнроид-ными гормонами, а химическая или тепловая обработка, предшествующая гидролизу, могут приводить к артефактам. Необычные аминокислоты, возникающие в физиологических условиях, могут быть разделены на две группы. Первая группа объединяет соединения, полученные путем замещения относительно небольших групп в нормальных белковых компонентах (табл. 23.2.2). Все изменения, по-видимому, являются следствием индуцируемых ферментами реакций, а введенными заместителями, в основном, оказываются С-гидроксил, jV-метил боковой цепи или галоген в ароматическом ядре тирозина. [c.227]

    Для гидролиза белков до составляющих их аминокислот обычно используют хлороводородную кислоту (бМ, 24 ч, 120°С, эвакуированные запаянные ампулы). Однако этот метод не лищеи побочных реакций. Из генетически кодированных аминокислот интенсивно распадается триптофан, в то время как выходы серина и треонина составляют только 90—95%. Может происходить также хлорирование тирозина и образование орнитина из аргинина. Нередко метионин частично превращается в соответствующий сульфоксид, а цистеин полностью окисляется в цистин. Глутамин и аспарагин, естественно, гидролизуются до глутаминовой и аспарагиновой кислот. Использование п-толуолсульфокислоты может повысить выход триптофана [11], однако эту аминокислоту обычно определяют после гидролиза с помощью гидроксида бария. С другой стороны, щелочной гидролиз, помимо того, что вызывает рацемизацию, приводит к больщим потерям серина, треонина, цистеина и аргинина. [c.231]

    Если генетический код триплетен, каждой аминокислоте должны соответствовать три расположенных рядом основания. Поскольку число возможных триплетных комбинаций составляет 4 , т.е. 64, существование трип-летного кода предполагает, что либо не все триплеты участвуют в кодировании аминокислот, либо некоторые аминокислоты кодируются более чем одним кодоном. [c.57]

    Генетический код, по-видимому, универсален, т. е. единый для всех организмов. Такой код приведен в табл. 15.1. Этот код является вырожденным для кодирования двадцати аминокислот четырехбуквенный алфавит дает возможность составить 64 трехбуквенных слова, и, таким образом, каждая аминокислота кодируется более чем одним кодоном. Вырожденность связана главным образом с третьей буквой кодона. [c.461]

    Информация о последовательности аминокислот в полипептидной цепи белка, программируемого информационной РНК, записана в молекуле этой РНК, а следовательно, и в соответствующем участке одной из цепей ДНК, в виде последовательности кодирующих эти аминокислоты тринуклеотидных фрагментов — кодонов. Необходимость как минимум трех нуклеотидов для кодирования каждой из 20 аминокислот, формирующих первичную полипептидную цепь при биосинтезе белков, вытекает из очевидных арифметических соображений ни каждый из четырех нуклеотидов по отдельности, ни 16 мыслимых динуклеотид-ных фрагментов не могут однозначно кодировать 20 аминокислот. Соответствие между 64 кодонами и 20 аминокислотами, участвующими в биосинтезе полипептидных цепей на рибосомах, получило название генетического кода. Первое доказательство самого факта существования генетического кода и первый шаг к его расшифровке были получены в эксперименте Ниренберга и Маттеи. Эти авторы показали, что на рибосомах в присутствии всех компонентов, необходимых для биосинтеза белка, и построенной полностью из фрагментов уридин-5 онофос-фата полиуридиловой кислоты в качестве информационной РНК, синтезируется полифенилаланин. Отсюда следовало, что фенилаланин кодируется несколькими, скорее всего тремя остатками уридиловой кислоты, т. е. кодоном для фенилаланина является тринуклеотид ШШ (в этом параграфе в табл. 5.2 символы межнуклеотидных фосфатов или заменяющие их черточки опущены). [c.172]

    Теперь мы рассмотрим более подробно, каким образом четырехбуквенный язык ДНК переводится на двадцатибуквенный язьпс белков. Уже давно было ясно, что для кодирования каждой аминокислоты требуется по меньшей мере три нуклеотидных остатка ДНК, поскольку из четырех кодовых букв ДНК (А, Т, G и С) можно составить всего 16 различных сочетаний по два (4 = 16), а этого недостаточно, чтобы кодировать 20 аминокислот. Если же из четырех оснований составить сочетания по три, то можно получить 4 = 64 различных комбинации. Ранние генетические эксперименты окончательно доказали не только то, что слова генетического кода для любой аминокислоты представляют собой триплеты нуклеотидов, но и то, что между кодонами для соседних аминокислот нет знаков препинания. Однако оставался невыясненным основной вопрос какие конкретно трехбуквенные кодовые слова соответствуют каждой из аминокислот Как можно определить это экспериментально  [c.948]

    ЭТОГО вывода лежали три соображения. Во-первых, четыре нуклеотида, взятые по одному, могут кодировать только четыре разные аминокислоты. Сочетания из двух нуклеотидов могут кодировать только 4 или 16 аминокислот, а это меньше, чем те 20 аминокислот, которые, как было известно, присутствуют в белках. И только совокупности трех нуклеотидов дают 64 возможных кодона (4 ), т.е. число, более чем достаточное для кодирования 20 разных аминокислот. Генетические эксперименты, выполненные на мутантах с делец и ям и или вставками длиной один, два или три нуклеотида в генах, кодируюших белки, позволили доказать, что наиболее подходяший размер для кодона—три нуклеотида (рис. 3.19). Более того, из этих исследований бьш сделан вывод, что нуклеотидная последовательность считывается расположенными один за другим триплетами с фиксированной точки. Все эти выводы наряду с данными о том, что полипептидные цепи синтезируются последовательно путем соединения аминогруппы одной аминокислоты с карбоксильной Фуппой другой, послужили краеугольным камнем в расшифровке генетического кода. [c.132]

    Поэтому было высказано предположение, что каждая аминокислота определяется сочетанием по меньшей мере из трех нуклеотидов, которые могут дать 64 комбинации (4 = 64), что более чем достаточно для кодирования двадцати аминокислот. Крик и его сотрудники [54—56] привели весьма веские доводы в пользу триплетной теории и доказали, что участок полинуклеотида, названный ими кодоном, состоит из трех оснований. Их эксперимент был проведен па А- и В-цистронах локуса Гц бактериофага Т4. Как показал Бензер с помощью тщательно составленной генетической карты фага Т4, от одного определенного участка ДНК зависит, сможет или нет фаг заразить К-штамм Es heri hia oli. Крик и его сотрудники использовали профлавин (стр. 221), чтобы добиться делении (выпадения) одного основания или, наоборот, вставки дополнительного основания в ДНК. [c.271]

    За последнее десятилетие генетика претерпела быструю эволюцию. Составной частью методов генетики микроорганизмов стали значительно усовершенствованные методы биохимии и биофизики. Генетические исследования физической природы генов были ускорены появлением работы Уотсона и Крика о репликации первичной генетической информации. В свете этих достижений термин ген в настоящее время редко используется без расшифровки. В микробиологической генетике ему, по сути дела, нет адекватного значения. Для обозначения соответствующего понятия у микроорганизмов появились новые термины с более точным значением, например рекон (Бензер [1]). Представление о половом размножении как единственном методе генетической рекомбинации претерпело изменение и включило альтернативные механизмы, например трансформацию, конъюгацию у бактерий, парасексуализм в грибах и др. (Понтекорво [2]). Разрабатываются методы изучения последовательности пар оснований в нуклеиновых кислотах и механизма кодирования, управляющего последовательностью аминокислот в белках приближается решение и многих других фундаментальных проблем генетики. [c.140]

    Три из 64 кодонов не кодируют каких-либо аминокислот. Они были названы нонсенс (nonsense)-кодонамн. По крайней мере два из них выполняют функцию сигналов терминации. Они определяют, где должен остановиться синтез полипептидной цепи. Функциональное значение остальных триплетов— кодирование 20 аминокислот. Важнейшее свойство генетического кода—его вырожденность . Это означает, что несколько кодонов кодируют одну и ту же аминокислоту. Алализ таблицы генетического кода (табл. 40.1) приводит к выводу о том, что все 64 кодона можно подразделить на 16 семейств. В одно семейство объединены кодоны, имеющие одинаковые нуклеиновые основания в первом и втором положениях. В таблице каждое семейство занимает одну вертикальную колонку между горизонтальными линиями. Например, кодон N, где N может быть [c.95]

    Три из 64 кодонов не кодируют каких-либо аминокислот. Они были названы нонсенс попзепве)-кодонамн. По крайней мере два из них выполняют функцию сигналов терминации. Они определяют, где должен остановиться синтез полипептидной цепи. Функциональное значение остальных триплетов — кодирование 20 аминокислот. Важнейшее свойство генетического кода — его вырожденность . Это означает, что несколько кодонов кодируют одну и ту же аминокислоту. Анализ таблицы генетического кода (табл. 40.1) приводит к выводу о том, что все 64 кодона можно подразделить на 16 семейств. В одно семейство объединены кодоны, имеющие одинаковые нуклеиновые основания в первом и втором положениях. В таблице каждое семейство занимает одну вертикальную колонку между горизонтальными линиями. Например, кодон ССН, где N может быть и. С, А или О, определяет семейство во второй колонке, расположенной между первой и второй горизонтальными разделительными линиями. В некоторых семействах все 4 кодона кодируют одну и ту же аминокислоту, как в случае вышеупомянутого СС-семейства. Такие семейства называют несмешанными. Восемь семейств из 16 являются несмешанными. [c.95]

    Структура генома у высших организмов — в смысле функционального разнообразия генных продуктов — до сих пор остается загадкой. Несомненно, многие гены кодируют фермен ты, и одним из побочных результатов исследования природных популяций дрозофилы было нанесение на генетическую карту разных видов многих новых генов, кодирующих специфические ферменты. Но количество ДНК в сперматозоиде D. melanogaster соответствует 10 парам оснований. Если считать, что на каждый кодон приходится три пары оснований, а каждый полипептид состоит в среднем из 150 аминокислот, то этой ДНК окажется достаточно для кодирования примерно 2-10 полипептидов. У человека ДНК в 16 раз больше, и ее хватит для кодирования 3-10 полипептидов. Едва ли мы сможем поверить, что высшие организмы способны синтезировать от 250 тысяч до [c.133]

    Среди других факторов, оказывающих влияние на эффективность трансляции, следует упомянуть частоту использования кодонов при кодировании белков в структурных частях разных генов [131]. В настоящее время установлено, что использование синонимических кодонов (кодирующих одну и ту же аминокислоту) вырожденного генетического кода не случайно и отражает количественную представленность отдельных изоакцепторных тРНК в клетках организма. С другой стороны, частота использования кодонов в разных генах одного и того же организма является эффективным фактором, регулирующим уровень экспрессии этих генов в процессе трансляции. Чем реже тот или иной ко- [c.114]

    Генетический код устанавливает соответствие между нуклеотидной последовательностью данной мРНК и аминокислотной последовательностью синтезируемой на ней полипептидной цепи. Размер единиц кодирования и сами эти единицы, однозначно задающие ту или иную аминокислоту (кодоны), практически одинаковы у всех живых организмов. Более того, основные принципы и механизмы перевода генетических посланий также универсальны. [c.116]

    И аминокислотными последовательностями осуществляется с помощью генетичесвого еолд. Для составления генетического словаря бьшо проведено множество специальных генетических и биохимических экспериментов. Он включает также и знаки препинания—начало и конец участков, кодирующих белки. За исключением незначительных вариаций в использовании нескольких нуклеотидов для кодирования особых аминокислот у митохондрий и некоторых инфузорий, генетический словарь универсален, т.е. конкретная последовательность нуклеотидов задает одинаковую для всех живых организмов аминокислотную последовательность. [c.131]

    Наличие подобной системы кодирования подразумевает существование некоего механизма для перевода информации с языка нуклеотидов на язык аминокислот. Как и следовало ожидать, этот механизм и реакции, осуществляющие перевод (трансляцию), очень сложны. Несмотря на различия между про- и эукариотами как в том, что касается структуры мРНК (разд. 3.8.а), так и в физическом взаимо-отнощении генов и аппарата трансляции, оба типа организмов используют весьма сходные механизмы для расщифровки генетических посланий. [c.131]

    На протяжении долгих лет осугцествлялись многочисленные попытки выделить то самое вегцество клетки, те самые элементы , в которых заложена генетическая информация. На роль таких молекул поочередно выдвигались различные биополимеры. Весьма долгое время предпочтение отдавалось белкам, большое разнообразие которых обеспечивалось участием в их формировании до 20 аминокислот. Что касается ДНК, то сугцествовало мнение о невозможности кодирования ею всего сугцествуюгцего биоразнообразия только из-за того, что в состав ДНК входит, как было показано в 20-х гг. XX столетия биохимиком П.Левеном, всего-навсего 4 типа структурных единиц, названных им нуклеотидами. Более того, долгое время считалось, что нуклеиновые [c.6]


Смотреть страницы где упоминается термин Код генетический кодирование аминокислот: [c.53]    [c.86]    [c.7]    [c.533]    [c.518]    [c.44]    [c.136]    [c.533]    [c.55]    [c.195]    [c.16]    [c.14]    [c.10]   
Молекулярная генетика (1974) -- [ c.433 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты кодирование



© 2025 chem21.info Реклама на сайте