Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурная организация белка г гипотеза

    В соответствии с термодинамической гипотезой Анфинсена и теорией структурной организации белка (см. гл. 2), будем считать, что механизм свертывания этих сложных олигопептидов является не статистическим, а статистико-детерминистическим, причем стерически возможными или предпочтительными становятся взаимодействия только между определенными парами остатков ys. Расчет всех молекул строился таким образом, что его результаты должны были опровергнуть или доказать справедливость представления о том, что определяет конформацию молекулы не образование дисульфидных мостиков, а, напротив, детерминированные состояния различных участков цепи, взаимодействия между которыми диктуют избирательную сближенность цистеиновых пар. При априорном многостадийном конформационном анализе пептидов из 18, 21, 22 и 36 аминокислотных остатков случайная сближенность цистеинов практически исключена. Поэтому автоматический приход на завершающей стадии расчета каждого пептида к самым низкоэнергетическим конформациям линейной последовательности молекулы с близкими контактами между соответствующими остатками ys будет одновременно свидетельствовать о наличии согласованности всех видов межостаточных взаимодействий в глобальной структуре (одно из основных положений конформационной теории белка), справедливости термодинамической гипотезы образования дисульфидных связей, адекватности использованных в расчете потенциальных функций реальным атом-атомным взаимодействиям и, наконец, [c.292]


    Это был первый факт, который свидетельствовал об участии одного белка в сборке трехмерной структуры другого и, следовательно, противоречил (по крайней мере формально) постулатам Ламри и Эйринга и термодинамической гипотезе самого Анфинсена. Долгое время он оставался единственным и практически не замеченным на фоне многочисленных данных о полной ренатурации развернутой белковой цепи in vitro, однозначно подтверждавших положение о том, что вся информация о пространственном строении и функции белка заключена в его аминокислотной последовательности. Однако при постоянно увеличивающемся внимании к проблеме структурной организации белковых молекул, всевозрастающем количестве работ в области обратимой денатурации, разработке новых методов анализа промежуточных состояний и поиске подхода к изучению деталей рибосомного синтеза стали все чаще обнаруживаться факты, указывающие на более сложный механизм сборки белка in vivo, чем это, на первый взгляд, следовало из опытов in vitro. Но и там положение не отличалось большой ясностью. Оказалось, что в искусственных условиях свертывание природных полипептидных цепей не всегда бывает успешным. Лучше всего ренатурируют водорастворимые однодоменные глобулярные белки небольших размеров. [c.411]

    В книге рассмотрено концептуальное развитие исследований структурно-функциональной организации белка. Выявлен генезис представлений о связи между структурой и функцией. Проанализированы гипотезы биокатализа. Обсуждены результаты априорных расчетов взаимодействия ряда ферментов с субстратами и ингибиторами. Сформулирована общая теория структурно-функциональной организации белков. Рассмотрен количественный подход к изучению механизмов белковых взаимодействий. Обсуждены методы исследования ферментативных реакций. [c.279]

    Трехмерные структуры двух глобулярных белков дали блестящее и, казалось, бесспорное доказательство справедливости господствующим в течение почти двух десятилетий а-спиральной концепции Полинга и структурной классификации белков Линдерстрем-Ланга. В лишенных какой-либо симметрии белковых молекулах а-спираль, действительно, оказалась доминирующей структурой (75%), стабилизированной пептидными водородными связями типа 5 — 1. Идентифицированные структуры удовлетворительно согласовывались и с еще одной гипотезой структурной организации белков - гидрофобной концепцией У. Козмана. [c.73]

    С. Левинталем [3]. Оно заключается в том, что структура нативного белка не обязательно должна обладать самой низкой энергией Гиббса, чтобы быть стабильной и свертываться спонтанно. В силу своей сложности молекула белка может находиться в метастабильном состоянии, т.е. отвечать не глобальному, а одному из локальных минимумов энергии. Еще задолго до этого, в 1935 г., Э. Бауэр — автор первого труда по теоретической биологии, видел в особом деформированном состоянии молекул специфику структурной организации белков, определяющую их биологические свойства [4]. Представление о метастабильном состоянии белковых молекул и о достаточной устойчивости этого состояния привело к формулировке так называемой кинетической гипотезы свертывания белка (Д. Уетлауфер и С. Ристоу [5]). В настоящее время не существует экспериментального метода, с помощью которого можно было бы различить стабильное и нестабильное состояние белковой молекулы. Конечно, при образовании такой сложной структуры априори нельзя исключить ситуацию, при которой глобальный минимум энергии окажется окруженным высоким потенциальным барьером и поэтому явится кинетически недостижимым. В данной главе и далее обсуждаются главным образом экспериментальные исследования процессов свертывания и развертывания белков, причем наибольшее внимание сосредоточено на молекулярных аспектах денатурации. [c.339]


    K. Анфинсена [138]. В литературе встречается также иное мнение, согласно которому молекула белка находится в метастабильном состоянии, т.е. отвечает не глобальному, а одному из локальных минимумов свобод, ной энергии. Такая точка зрения нашла отражение в так называемом парадоксе К. Левинталя [139] и кинетической гипотезе свертывания белка Д. Уетлауфера и С. Ристоу [140]. Однако задолго до публикации этих работ (в 1935 г.) Э. Бауэр - автор первого труда по теоретической биологии, разработал концепцию, в которой специфика структурной организации белка, определяющая его биологические свойства, объяснялась особым деформированным состоянием молекул [141]. Представление, развитое в работах [139-141], хотя еще и привлекается в энзимологии при трактовке механизма фермент-субстратных взаимодействий [142-149] (правда, все реже и только для феноменологического описания), в исследованиях нативных конформаций почти утратило свое былое значение. [c.240]

    Себагиии ( аЪа п ) Д нд Д. (р. 1931), американский биокимик. Образование получил а университете в Росарио (Аргентина), с 1972 г.— профессор Нью-Йоркского университета. Основные работы — по изучению биохимии и структурной организации внутриклеточных органелл. Совместно с Г. Бло-белом высказал гипотезу о наличии сигнальной последовательности во вновь синтезируемых белиак. Идентифицировал белки, участвующие в связывании рибосом на мембране эндоплазматического ретикулума. [c.245]

    Мысль о том, что с мембранами связаны белки, высказал впервые Дж. Даниелли в 1935 г. в связи с необходимостью объяснить явное расхождение между поверхностным натяжением на границе раздела масло — вода и мембрана — вода. Хотя в то время какая-либо информация о мембранных белках отсутствовала, Дж. Даниелли и X. Давсон в том же 1935 г. выдвинули гипотезу об общем принципе структурной организации клеточных мембран, в соответствии с которым мембрана представляется как трехслойная структура (рис. 312) —своеобразный сэндвич, где двойной слой ориентированных одинаковым образом липидных молекул заключен между двумя слоями глобулярного белка, формирующего границу мембраны с водой. Предполагалось, что в этой структуре саязывание липидов с белками осуществляется за счет полярных взаимодействий. Поскольку толщина мембраны в то время не была известна, считалось, что пространство между двумя липидными монослоями может быть заполнено липоидным, жироподобным материалом. [c.581]

    Э. Гортер и Ф. Грендель выдвинули представление о липидном бислое как о полупроницаемом барьере, окружающем клетку. Представление о том, что с мембранами связаны белки, впервые в 1935 г. высказал Дж. Даниелли. В том же 1935 г. Дж. Даниелли совместно с X. Даусоном выдвинули гипотезу об общем принципе структурной организации клеточных мембран как трехслойной структуре — своеобразном сэндвиче, где двойной слой ориентированных одинаковым образом липидных молекул заключен между двумя слоями глобулярного белка, формирующего границу мембраны с водой. [c.33]

    Вопрос о справедливости той или иной модели движения воды в коллагене имеет принципиальное значение, поскольку его решение связано с важными особенностями биологической роли воды, как отмечено в предисловии к настоящей главе. В частности, основные функции живого — мембранная проницаемость, молекулярная и ионная селективность клеток, мускульная активность, проводимость нервных импульсов и другие — по одной из гипотез ( адсорбционная теория ) определяются наличием особого, упорядоченного или структурированного состояния во всей гидратной оболочке белка. Согласно этой теории, вся или почти вся внутриклеточная вода связана или структурирована и растворимость данного вещества в ней является функцией степени структурной организации гидратной оболочки белка. В свою очередь, степень структурной организации водпо11 оболочки зависит от состояния самой белковой молекулы. Изменение состояния белка иод влиянием внешнего воздействия (например, нервного импульса) приводит в описываемой модели к очень сложной последовательности химических ре- [c.137]

    Согласно первой концепции пространственная структура белковой молекулы (третичная) представляет собой ансамбль регулярных (вторичных) структур, образуемых основной цепью. Данные о конформационных состояниях синтетических полипептидов, фибриллярных белков и впервые ставшие известными на атомном уровне трехмерные структуры миоглобина и гемоглобина дали блестящие и как будто бы бесспорные доказательства справедливости предположения, высказанного еще Астбери и остававшегося в молекулярной биологии безальтернативным в течение десятилетий, о единстве структурных элементов белковых молекул. Кристаллографические структуры миоглобина и гемоглобина явились подлинным триумфом а-спиральной концепции Полинга и Кори, которая после этого представлялась уже не как весьма правдоподобная и полезная рабочая гипотеза, а как не вызывающий сомнений принцип пространственной организации белковых молекул. Эта концепция легла в основу структурной классификации белков Лин-дерстрем-Ланга и стала направляющей идеей поиска эмпирических правил свертывания полипептидной цепи. Ей не только не противоречила, а, напротив, на первый взгляд, естественным образом дополняла концепция гидрофобных взаимодействий Козмана. Последняя ут- [c.229]


    ТОЙ структурной и функциональной организации, какой располагает бактериальная клетка. Поэтому его можно считать аналогом, а быть мо5кет, даже предшественником сложных и высокоспециализированных мембранных элементов более высокоорганизованных клеток. С этой гипотезой согласуются следующие наблюдения 1) аппарат окислительного фосфорилирования бактериальной клетки включен в ее мембрану или связан с ней 2) рибосомы, прикрепленные к мембране, очевидно, являются местом наиболее интенсивного и эффективного синтеза белков 3) наследственное вещество бактерий (т. е. их ДНК), видимо, структурно связано с определенным участком мембраны 4) в некоторых быстро растущих растительных клетках мембрана способна, по-видимому, создавать путем образования перетяжек структуры, сходные с митохондриями 5) для всех мембранных элементов характерна определенная строгая упорядоченность, касающаяся состава, структуры и некоторых свойств. [c.249]

    Начатое незадолго до 1951 г. Астбери, Амброзе, Бэмфордом, Эллиоттом и другими изучение пространственного строения синтетических полипептидов получило после опубликования работ Полинга и Кори стремительное развитие. Повышенный интерес к таким соединениям был стимулирован результатами уже первых работ в этой области, которые вселили надежду, что исследование гомополипептидов может существенно помочь в решении одной из основных задач проблемы белка — установлении принципов пространственной организации белковых молекул. Такой оптимизм в то время казался вполне оправданным. Синтетические полипептиды состоят из тех же структурных элементов, что и белки, и, следовательно, конформации тех и других определяются одними и теми же видами взаимодействий. Учитывая одинаковую природу в обоих случаях взаимодействий между валентно несвязанными атомами, можно было полагать, что изучение структуры более простых по химическому строению синтетических полипептидов при относительной легкости целенаправленного моделирования аминокислотного состава, последовательности и длины пептидной цепи поможет выяснить основные факторы, ответственные за формирование пространственного строения белков. Особое значение эти соединения приобрели в связи с обнаруженной общностью между их структурами и структурами природных полипептидов — фибриллярных и глобулярных белков. Первые же исследования показали, что синтетические полипептиды образуют два главных типа структур, аналогичных а- и -формам кератина, миозина, фиброина шелка и др., которые, как и в случае белков, могут обратимо переходить друг в друга. После работ Полинга и Кори эти формы были интерпретированы как а-спираль и -структура складчатого листа. Еще более обоснованной стала выглядеть основная, а по существу единственная в то время структурная гипотеза белков, согласно которой их пространственное строение представлялось в виде [c.28]

    Представление о пространственной огранизации белковой цепи не только в виде цельной компактной глобулы, но и в форме нескольких слабо связанных между собой глобулярных областей неоднократно высказывалось рядом авторов при анализе кристаллографических структур отдельных белков. Впервые это было сделано Д. Филлипсом в 1966 г. при описании структуры лизоцима в виде нескольких компактных глобулярных блоков [219]. Подобные, но более обособленные друг от друга структурные образования были отмечены у иммуноглобулинов Б. Каннингхэмом и сотр. в 1971 г. [220]. Для характеристики трехмерных структур белков этой группы ими была сформулирована гипотеза доменов в предположении о независимости генетического контроля каждой структурно автономной области. Вне связи с иммуноглобулинами доменная организация трехмерной структуры была отмечена в 1972 г. Дж. Бирктофтом и Д. Блоу у а-химотрипсина [221]. Нативная конформация этого белка включает два домена, каждый из которых, по мнению некоторых авторов, имеет цилиндрическую [c.307]


Смотреть страницы где упоминается термин Структурная организация белка г гипотеза: [c.240]    [c.303]   
Проблема белка (1997) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гипотезы

РНК структурная организация



© 2025 chem21.info Реклама на сайте