Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты фенилаланин

    Заметим, что именно аминокислоты фенилаланин, тирозин и триптофан обусловливают спектры поглощения белков в ультрафиолетовой области спектра. Обычно считают, что максимум поглощения белков соответствует 280 нм. [c.30]

    Роль заместителей со свободными электронными парами ясно показывает сравнение кривых КД двух ароматических аминокислот — фенилаланина и тирозина (рис. 60). [c.505]


    Ароматические аминокислоты — фенилаланин и тирозин [c.474]

    Из приведенных данных М. Ниренберга становится очевидным, что поли-У, т.е. РНК, гипотетически содержащая остатки только одного уридилового мононуклеотида, способствует синтезу белка, построенного из остатков одной аминокислоты—фенилаланина. На этом основании был сделан вывод, что кодоном для включения фенилаланина в белковую молекулу может служить триплет, состоящий из трех уридиловых нуклео- [c.520]

    В настоящее время известен механизм действия пищеварительного фермента химотрипсина, расщепляющего пептидные связи, образованные ароматическими а-аминокислотами (фенилаланин, тирозин, триптофан) с другими аминокислотами. [c.346]

    Для специфического расщепления белков по определенным точкам применяются как ферментативные, так и химические методы. Из ферментов, катализирующих гидролиз белков по определенным точкам, наиболее широко используют трипсин и химотрипсин. Трипсин специфично катализирует гидролиз пептидных связей, расположенных после положительно заряженных аминокислотных остатков лизина и аргинина. Химотрипсин преимущественно расщепляет белки после остатков ароматических аминокислот — фенилаланина, тирозина и трипто- [c.269]

    Во-вторых, в пентозофосфатном пути окисления глюкозы образуются важнейшие структурные предшественники для анаболических процессов в клетке, в том числе рибозо-5-фосфат — для биосинтеза нуклеотидов и нуклеиновых кислот, эритрозо-4-фосфат — для биосинтеза трех аминокислот фенилаланина, тирозина, триптофана. [c.255]

    Химотрипсин обладает более широкой субстратной специфичностью, чем трипсин. Он катализирует гидролиз не только пептидов, но и эфиров, амидов и других ацилпроизводных, хотя наибольшую активность он проявляет по отношению к пептидным связям, в образовании которых принимают участие карбоксильные группы ароматических аминокислот — фенилаланина, тирозина и триптофана. [c.363]

    При нагревании с крепкой азотной кислотой растворы белка дают желтое окрашивание. Реакция обусловлена наличием в белках циклических аминокислот(фенилаланина, тирозина, триптофана) и основана на образовании нитропроизводных этих аминокислот  [c.12]

    Картина регуляции осложняется тем, что у многих организмов для одного и того же субстрата часто используется несколько транспортных систем, отличающихся по специфичности и величине кинетических параметров. Существуют системы с узкой специфичностью, предназначенные только для одного или небольшого числа сходных субстратов, а также системы с широкой специфичностью. Например, у Е. соИ существуют 4 системы для транспорта ароматических аминокислот (фенилаланина, тирозина и триптофана) три из них специфичны только для одной из этих аминокислот, а четвертая является общей для всех данных аминокислот. [c.68]


    Ультрафиолетовые спектры поглощения определяются возбуждением электронных уровней атомов и молекул и обладают максимумами, положение которых характерно для определенных атомных группировок, сопряженных двойных связей и др, В белках ультрафиолетовые спектры поглощения в основном определяются ароматическими аминокислотами — фенилаланином /--макс— 260 м х), тирозином и триптофаном 280 жр-), причем спектры поглощения могут быть даже использованы для аналитического определения этих аминокислот. Нуклеиновые кислоты и нуклеопротеиды обладают настолько резким максимумом поглощения при 260—265 лр., что при помощи фотографирования в ультрафиолетовом микроскопе легко определить их содержание в отдельных клетках (Брумберг). Зависимость ультрафиолетовых спектров поглощения от pH, сос- тава среды, от образования комплексов с другими соединениями позволяет исследовать изменения состояния растворенных веществ так, по смещению максимума поглощения с 280 до 260—265 м а было обнаружено образование комплекса между белками и полисахаридами (Розенфельд). Линейные полимеры обычно не имеют интенсивных полос поглощения в видимой и ближней ультрафиолетовой областях спектра. [c.61]

    Пальмитиновая кислота Аминокислоты Фенилаланин Тирозин Амиды [c.132]

    При взаимодействии фталевого ангидрида с аминокислотой (фенилаланин) получают Ы-фталил-Р-фенилаланин (СОП, 12, 165 выход 95%)  [c.300]

    Описанный ниже эксперимент показывает, каким образом был расшифрован генетический код. Раствор ферментов, полученный из бактериальных клеток и добавленный к раствору, содержащему все 20 аминокислот, вызывает синтез полипептидной цепи, состоящей только из остатков аминокислоты фенилаланина, если к нему добавить синтетическую РНК, состоящую из полиурацила (т. е. последовательность iJ-U-U-U-...). Следовательно, кодоном для фенилаланина служит иии, как показано в табл. 15.1. Основную работу по расшифровке генетического кода выполнили американские ученые М. У. Ниренберг, X. Г. Корана и Р. Г. Холли со своими сотрудниками при этом они использовали ферменты, открытые А. Корнбергом и С. Очоа. [c.461]

    Животные неспособны синтезировать циклическое ядро ароматических аминокислот. Фенилаланин и триптофан относятся к незаменимым аминокислотам. Тирози Же может быть образован в организме животного путем гидроксилирования фенилаланина (разд. 3,5). [c.137]

    Префеновая кислота также обладает большим разнообразием биосинтетических превраш,ений. Она является предшественником ароматических аминокислот, фенилаланина и тирозина- при декарбоксилировании префе-новой кислоты совместно с дегидратацией формируется бензольный фрагмент (в дальнейшем — фрагмент фенилаланина), при ее декарбоксилировании совместно с дегидрированием формируется фенольный фрагмент (в дальнейшем — фрагмент тирозина). Полученные таким образом арилзамещенные пиро-виноградные кислоты далее аминируют-ся одним из доноров аминогруппы обычным образом, как это описано для алифатических а-кетокислот в биосинтезе аминокислот (схема 8.4.8). [c.218]

    N-Koнцeвoй аминокислотой служит глутаминовая кислота, а С-концевой аминокислотой — фенилаланин. Какая структура согласуется с этилш данными Примечание пептид содержит по две из следующих кислот аланин, глицин, триптофан. Кроме того. [c.414]

    Ксантопротеиновая реакция. Характерна для некоторых ароматических аминокислот (фенилаланина, тирозина, триптофана). При нагрсваиии белков и полипептидов с концентрированной азотной кислотой образуется нитросоединение желтого цвета. [c.10]

    Дальнейшая расшифровка кода была основана на использовании синтетических статистических гетерополинуклеотидов определенного состава, задаваемого набором и соотношением субстратных нуклео-зиддифосфатов в полинуклеотидфосфорилазной реакции. Так, было показано, что статистический сополимер поли(и. С) кодирует включение в полипептидную цепь четырех аминокислот фенилаланина, лейцина, серина и пролина. Если соотношение U С в полинуклеотиде было 1 1, то все четыре аминокислоты включались в полипептид [c.14]

    Из ароматических аминокислот фенилаланин, тирозин и триптофан -при аналогичном бактериальном декарбоксилировании образуются соответствующие амины фенилэтиламин, параоксифенилэтиламин (или тира-мин) и индолилэтиламин (триптамин). Кроме того, микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот, в частности тирозина и триптофана, с образованием ядовитых продуктов обмена - соответственно крезола и фенола, скатола и индола. [c.427]

    В ряде лабораторий (в частности, в лаборатории С. Бреннера) были получены данные о возможности существования в клетках в соединении с рибосомами короткоживущей РНК, названной информационной (иРНК). Сейчас она обозначается как матричная РНК (мРНК), потому что ее роль заключается в переносе информации от ДНК в ядре (где она синтезируется под действием ДНК-зависимой РНК-полимеразы) до цитоплазмы, где она соединяется с рибосомами и служит матрицей, на которой осуществляется синтез белка. Эта блестящая гипотеза затем экспериментально бьша доказана в лаборатории М. Ниренберга. При изучении влияния различных фракций клеточной РНК на способность рибосом, выделенных из Е. oli, к синтезу белка было установлено, что некоторые из них стимулировали включение С-аминокислот в синтезируемый полипептид. Добавление синтетического полинуклеотида, в частности полиуридиловой кислоты (поли-У), в белоксинтезирующую систему приводило к включению в синтезирующуюся белковую молекулу единственной аминокислоты -фенилаланина. Поли-У вызывал синтез в бесклеточной системе необычного полипептида полифенилаланина. Таким образом, искусственно синтезированный полирибонуклеотид, добавленный к препаратам рибосом, включавшим известные к тому времени факторы белкового синтеза и источники энергии, вызывал синтез определенного, запрограммированного полипептида. [c.519]


    Известны также нарушения обмена отдельных аминокислот. Многие из этих нарушений имеют врожденный или наследственный характер (см. главу 12). Примером может служить фенилкетонурия. Причина заболевания - наследственно обусловленный недостаток фенилаланин-4-моноокси-геназы в печени, вследствие чего метаболическое превращение аминокислоты фенилаланина в тирозин блокировано. Результат такого блокирования -накопление в организме фенилаланина и его кетопроизводных и появление их в большом количестве в моче. Обнаружить фенилкетонурию очень просто с помощью хлорида железа спустя 2-3 мин после добавления в мочу нескольких капель раствора хлорида железа появляется оливковозеленая окраска. [c.620]

    Особенностью ферментативного ароматического гидроксили рования является внутримолекулярная миграция атома водородг (или другого замещенного атома), которая сопровождает введение гидроксильной группы в ароматическое кольцо. В приведенном ниже примере гидроксилирования аминокислоты фенилаланина в тирозин (см. 11.1.5) гидроксильная группа входит в нара-положение бензольного кольца, вызывая перемещение атома трития в соседнее положение. [c.224]

    Катехоламины — представители биогенных аминов, lie. аминов, образующихся в организме в результате процессов Анаболизма. Принципиальный путь биосинтеза катехоламинов, одя из незаменимой а-аминокислоты фенилаланина (см. 11.1), веден на рис. 9.1. К каФехоламинам относятся три последних представленных на рисунке соединений — дофамин, норадре-Яин и адреналин, выполняющие, как и ацетилхолии, роль ней- иедиаторов. Адреналин является гормоном мозгового ве-Й тва надпочечников, а норадреналин и дофамин — () предщественниками. [c.255]

    На рис. 24.14 приведена схема синтеза девяти заменимых аминокислот, которые могут образовываться из глюкозы. Десятая аминокислота — тирозин — синтезируется путем гвдроксилирования незаменимой аминокислоты фенилаланина. [c.399]

    Тирозин, как отмечалось выше, образуется из незаменимой аминокислоты фенилаланина путем ее гидроксилирования под действием оксигеназы (фе-нилаланин-4-гидроксилаза) за счет прямого присоединения кислорода  [c.401]

    Синтез ароматических аминокислот фенилаланина, тирозина и триптофана также идет по общему пути. Предшественниками этих аминокислот являются фосфоеноилпируват (промежуточный метаболит гликолиза) и эритро-зо-4-фосфат (промежуточный метаболит пентозофосфатного пути). Процесс начинается с их конденсации и образования семиуглеродного сахара, который [c.404]

    Техника окисления серной, азотной и хлорной кислотами. Тщательно измельченный биологический материал помещают в колбу Кьельдаля емкостью 500 мл или в колбу для сжигания аппарата Бетге. Аппарат Бетге представляет собой замкнутую систему и позволяет улавливать летучие продукты окисления. К исследуемому материалу прибавляют через воронку по 25 мл концентрированной азотной и серной кислот и 35 мл 37% или 42% раствора хлорной кислоты. Окисление органических веществ ведут при постепенном усилении нагревания, добавляя при обугливании минерализата концентрированную азотную кислоту. Вскоре обугливание усиливается и над поверхностью минерализата появляются пары хлорного ангидрида. Нагревание либо прекращают, либо сильно ослабляют и продолжают окисление, добавляя по каплям 35—45% раствор азотной кислоты. Как только минерализат станет прозрачным, проверяют полноту окисления органических веществ, для чего к капле слегка охлажденного и разбавленного дистиллированной водой минерализата прибавляют 25% раствор аммиака. Если окисление прошло до конца, раствор должен окраситься в слабо желтый, но не в оранжевый цвет (реакция на наиболее трудно окисляемые аминокислоты фенилаланин, тирозин и триптофан). При наличии в минерализате хрома критерием конца минерали- [c.284]

    Основные научные работы посвящены расшифровке генетического кода. Синтезировал полиуриди-ловую кислоту и использовал ее в качестве п )остой информационной РНК. Доказал, что кодон урацил—урацил—урацил определяет включение аминокислоты фенилаланина в полипептидную цепь при биосинтезе. [c.364]

    Структурное звено фенилэтиламина, присущее изохинолиновым алкалоидам, присутствует также в ароматических аминокислотах— фенилаланине и тирозине, которые являются предшественниками в биосинтезе алкалоидов [43]. Этот вопрос исследовали многие ученые, в том числе Винтерштейн и Трайер, Робинсон и Бартон. Выделение и установление строения этих алкалоидов представляет собой одно из крупнейших достижений органической химии. Данное краткое описание некоторых алкалоидов ряда изохинолина преследует цель показать, как эти исследования способствовали развитию органической химии в целом и, в частности химии гетероциклических соединений. [c.281]

    Реакция обусловлена присутствием в белке циклических аминокислот — фенилаланина, тирозина (п-оксифенилалани-на) и триптофана (индолилаланина), которые при взаимодействии с концентрированной азотной кислотой образуют нитропроиаводные желтого цвета (реакция нитрования) [c.12]


Смотреть страницы где упоминается термин Аминокислоты фенилаланин: [c.351]    [c.834]    [c.25]    [c.63]    [c.207]    [c.598]    [c.543]    [c.553]    [c.699]    [c.406]    [c.75]    [c.364]    [c.430]    [c.482]    [c.412]    [c.166]    [c.86]    [c.701]   
Фотосинтез 1951 (1951) -- [ c.586 ]




ПОИСК





Смотрите так же термины и статьи:

Фенилаланин

Фенилаланин Фенилаланин



© 2025 chem21.info Реклама на сайте