Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура и функции дезоксирибонуклеиновых кислот

    Структура и функции дезоксирибонуклеиновых кислот [c.177]

    В зависимости от строения моносахарида, входящего в состав нуклеиновых кислот (НК), различают дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Необходимость подобной классификации определяется не только различным химическим строением ДНК и РНК, но и различием выполняемых ими биологических функций. Дезоксирибонуклеиновые кислоты ответственны за передачу наследственных признаков в ряду поколений живых организмов, поэтому конкретное строение ДНК каждого вида животных организмов будет строго специфично, однако общая структура ДНК одинакова для многих типов клеток. Рибонуклеиновые кислоты участвуют в процессе биосинтеза белка. [c.613]


    Функции, выполняемые ДНК и РНК в организме, а также их химические и физико-механические свойства различны. Помимо химического строения на свойства нуклеиновых кислот и их функции в организме весьма существенное влияние оказывают форма макромолекулы и надмолекулярные структуры, которые для рибонуклеиновых и дезоксирибонуклеиновых кислот также различны. [c.362]

    Среди советских биохимиков, научные труды которых получили развитие в послевоенные годы, следует назвать А. Н. Белозерского (1905—1972) — профессора Московского университета. Ему принадлежат исследования белков (нуклеиновых кислот). Он открыл наличие дезоксирибонуклеиновой кислоты в растениях, обнаружил специфические особенности структуры нуклеиновых кислот у различных бактерий. Широко известны работы А. Н. Энгельгардта по энергетическим и химическим функциям белков мышечной ткани. [c.303]

    Существует два вида нуклеиновых кислот дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК), которые различаются как по структуре, так и по функциям. Главным химическим различием ДНК и РНК является природа их углеводного компонента и пиримидинового основания. [c.62]

    Экспериментально доказано, что ДНК играет весьма важную роль в процессе синтеза некоторых ядерных белков. Это можно показать на следующем опыте. Ядра, выделенные из клеток, например из корешков гороха, с соблюдением всех предосторожностей, с сохранением присущих им ферментативных функций, обладают способностью к синтезу белка. Если же разрушить ДНК э- их ядер путем их обработки ферментом дезоксирибонуклеазой, го биосинтез белка прекращается. Уже неоднократно упоминалось, что наследственные свойства организмов, а значит, и свойства синтезируемых организмами белков определяются нуклеиновыми кислотами. Давно известно, что большая часть клеточной ДНК сосредоточена в хроматине ядра. Таким образом, ДНК локализована в тех же клеточных структурах, в которых хранится наследственная информация. Оказалось, что способность к синтезу специфических белков-ферментов и передача этой способности в поколениях связаны с дезоксирибонуклеиновой кислотой (ДНК). [c.273]

    За несколько последних десятилетий биологам удалось составить себе довольно полное представление о структуре, химизме и функциях важнейших клеточных органелл. Самая крупная органелла клетки — ядро (см. рис. 2.3), Это сферическое тело диаметром 5—10 мкм содержит большую часть генетической информации клетки, закодированной в виде длинных нитей сложного химического соединения — дезоксирибонуклеиновой кислоты (ДНК). ДНК присутствует в клетке в составе хроматина — сложного вещества, состоящего в основном из от- [c.32]


    Типы нуклеиновых кислот. В 1930 г. были определены два типа нуклеиновых кислот — ДНК и РНК, различающиеся химическим составом, молекулярной массой, сложностью структуры молекул, а также выполняемыми функциями в организме. Название нуклеиновых кислот обусловлено присутствием в кислоте углевода если в состав нуклеиновой кислоты входит рибоза, то она называется рибонуклеиновая кислота (РНК), а если входит дезоксирибоза, то нуклеиновая кислота называется дезоксирибонуклеиновая (ДНК). Кроме углеводного компонента, отдельные типы нуклеиновых кислот различаются составом азотистых оснований и структурой молекулы. [c.216]

    Вся информация о строении и функционировании любого живого организма содержится в закодированном ввде в его генетическом материале, основу которого составляет дезоксирибонуклеиновая кислота (ДНК). ДНК большинства организмов — это длинная двухцепочечная полимерная молекула. Последовательность мономерных единиц (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой. Принцип комплементарности обеспечивает идентичность новосинтезированных молекул ДНК, образующихся при их удвоении (репликации), исходным молекулам. Индивидуальными генетическими элементами со строго специфичной нуклеотидной последовательностью, кодирующими определенные продукты, являются гены. Одни из них кодируют белки, другие -только молекулы РНК. Информация, содержащаяся в генах, которые кодируют белки (структурных генах), расшифровывается в ходе двух последовательных процессов синтеза РНК (транскрипции) и синтеза белка (трансляции). Сначала на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК). Затем в ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы. Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы однозначно задает ее структуру и функции. [c.29]

    Нуклеиновые кислоты — молекулы, состоящие из отдельных мононуклеотидов. Функцией нуклеиновых кислот является запись и запоминание (хранение) биологической информации. Особенно важны два типа нуклеиновых кислот дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК находится в ядре клетки и является главной информирующей молекулой клетки. Таким образом, функцией ДНК является снабжение клетки информацией для точного воспроизводства каждого вида клетки, включая синтез необходимых ферментов, а также дополнительного количества молекул ДНК. Иными словами ДНК участвуют в процессах деления клетки и передаче наследственных признаков. Следует отметить, что по своей структуре ДНК каждого из организмов отличаются друг от друга. Молекулы ДНК представляют собой длинные цепи, находящиеся в виде спаренных или двухнитяных спиралей. Длина двух таких молекул составляет примерно 20 А. Молекулярный вес ДНК колеблется в пределах 100 000 000—4 000 000 000. Каждое из звеньев цепи ДНК составляют четыре различных повторяющихся мононуклеотида. Такая последовательность называется кодом. Строение нитей ДНК представлено на схеме 16. Следует отметить, что в скелете [c.333]

    За последние годы твердо установлено, что нуклеиновые кислоты выполняют в вирусе, клетке и в макроорганизме кибернетические функции. В дезоксирибонуклеиновой кислоте (ДНК) клеточных ядер и рибонуклеиновой кислоте (РНК) вирусов растений зафиксирована вся генетическая информация, т. е. необходимые данные для синтеза белков. Прямые опыты по трансформации бактерий растворами чистой ДНК, но заражению бактерий с помощью ДНК, выделенной из фагов, по заражению растений с помощью РНК, выделенной из вирусов, показывают, что именно макромолекулы ДНК и РНК являются носителяйи генетической информации. Если искать сравнение из области электронных счетно-решающих машин, то можно, как это делал Нейман, рассматривать по аналогии с клеткой машину, содержащую все необходимое, чтобы воспроизвести самое себя. В такой машине должны быть рабочие орудия (в клетке—это ферменты, организованные в пространственные структуры) и должен быть элемент памяти (например, магнитная лента), в котором зафиксированы с помощью кода все детали ее конструкции. Цепочка нуклеиновой кислоты играет в клетке ту же роль, что магнитная лента в электронной машине. Чем длиннее цепь нуклеиновой КИС.ЛОТЫ, тем больше информации в ней может быть запасено. [c.6]

    Полинуклеотиды, т. е. рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК), представляют собой макромолекулярные цепи, в которых, в соответствии с анализом, на 1 моль гетероцикла приходится 1 моль сахара и 1 остаток фосфорной кислоты. По кривой титрования ясно, что при каждом атоме фосфора имеется 1 гидроксил, т. е. что полинуклеотиды представляют собой двузамещенные эфиры фосфорной кислоты, сохранившей одну кислотную функцию. Все это позволяет полностью установить тип первичной структуры РНК и ДНК. Однако конкретная первичная структура каждой индивидуальной РНК и ДНК определяется еще чередованием четырех гетероциклов — двух пуриновых (аденин и гуанин) и двух пиримидиновых (урацил и цитозин — для РНК тимин и цитозин — для ДНК). Методы установления этого чередования только разрабатываются. Метод, предложенный Корана, состоит в подборе специфических ферментов, один из которых (из змеиного яда) расщепляет цепь по связи фосфорной кислоты с первичным гидроксилом (С, ), а другой (из селезенки) — по связи фосфорной кислоты с вторичной гидроксильной группой (Сз>)  [c.717]


    Форма, организация и функции клетки, т. е. ее жизнь, определяются ее белковым составом и активностью индивидуальных белков. Отсюда следует, что генетические инструкции должны содержать информацию, необходимую для точного синтеза набора белков, характерных для данной клетки. Эта информация закодирована в структуре очень больших молекул дезоксирибонуклеино-кислоты. При делении клетки необходимо точное воспроизведение этих молекул с последующим равным распределением информации между дочерними клетками. Эта информация должна-быть передана от ядра к белковым фабрикам — рибосомам. Изменения химической структуры дезоксирибонуклеиновой кислоты выявляются в виде мутаций в последующих поколениях. Наибольший вклад в расшифровку механизмов наследственности внесли работы, проведенные на непатогенной кишечной бактерии Es heri hia oli и на бактериофагах (бактериальных вирусах) последние обладают лишь ограниченным количеством генетической информации, содержащейся в нуклеиновой кислоте, которая окружена специфической белковой оболочкой они способны к самовоспроизведению только путем использования синтетического аппарата жи- [c.17]

    Систематическое изучение наследственности начиналось со сложных в генетическом отношении объектов-растений и животных. Благодаря этим ранним исследованиям была сформулирована концепция неделимого гена как функциональной единицы наследственности и принято положение, что перенос генов от одного поколения к другому подвержен действию разных случайных факторов. Однако до понимания химической природы генов и механизма их функционирования бьшо еш е далеко. Исследование генетических молекул и тонких механизмов регуляции наследственности стало возможным лишь тогда, когда в качестве экспериментальных моделей начали использоваться бактерии и вирусы, о сугцествовании которых первые генетики даже не подозревали. Только благодаря этим организмам впервые бьшо показано, что дезоксирибонуклеиновая кислота (ДНК), рибонуклеиновая кислота (РНК) и белок—универсальные детерминанты генетического поведения. Стремительность дальнейшего прогресса в этой области и убедительность полученных результатов стали реальными благодаря особым биологическим свойствам микроорганизмов, которые позволяли проводить манипуляции, необходимые для анализа генетических структур. Аналогичные аналитические исследования более сложных генетических систем тогда бьши невозможны, поэтому на животных и растения этот прогресс не распространялся. Развитие технологии рекомбинантных ДНК разрушило труднопреодолимые технические и концептуальные барьеры на пути расшифровки и понимания сложных генетических систем. Неудивительно, что наши взгляды на структуру и функцию генов значительно изменились, а новое мышление в свою очередь радикально изменило перспективы биологии. [c.11]


Смотреть страницы где упоминается термин Структура и функции дезоксирибонуклеиновых кислот: [c.247]    [c.26]    [c.519]    [c.446]    [c.450]    [c.519]    [c.678]    [c.184]   
Смотреть главы в:

Биохимия -> Структура и функции дезоксирибонуклеиновых кислот




ПОИСК





Смотрите так же термины и статьи:

Дезоксирибонуклеиновая структура

Дезоксирибонуклеиновые кислоты



© 2025 chem21.info Реклама на сайте