Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дезоксирибонуклеиновая кислота см также Нуклеиновые кислоты

    Изучением оптических свойств и вязкости растворов дезоксирибонуклеиновой кислоты, а также наблюдениями с помощью электронного микроскопа установлено, что молекула дезоксирибонуклеиновой кислоты представляет собой длинную нить. Отдельные нуклеотиды, входящие в состав нуклеиновых кислот, соединяясь между собой, образуют длинную цепную молекулу, в которой отдельные нуклеотиды связываются между собой остатками фосфорной кислоты у 3-го и 5-го атомов дезоксирибозы. [c.562]


    В соответствии с терминологией, предложенной Линдер-стрём-Лангом [ ], можно сказать, что молекулы обычных полимеров в растворе не обладают вторичной структурой, тогда как молекулы биологически активных полимеров и их синтетических аналогов могут ее иметь. При этом первичной структурой макромолекулы называется число и расположение химических связей в молекуле, а вторичной — регулярная пространственная спиральная структура с определенной периодичностью, стабилизуемая водородными связями. Исследованию вторичных структур биологически активных макромолекул посвящено громадное количество работ, в которых были определены параметры спиральных конформаций для большого числа синтетических полипептидов и полинуклеотидов, а также для природных нуклеиновых кислот и белков. В последнем случае, наряду с вторичной структурой, большую роль играет также третичная структура молекул, т. е. взаимное расположение спиральных и неспиральных участков, обусловленное взаимодействием боковых групп цепи, в частности, связями 5—8. Наиболее известные примеры вторичных сгруктур представляют собой а-спираль Полинга — Кори [2> ] для полипептидов и двойная спираль Крика — Уотсона [ ] для дезоксирибонуклеиновой кислоты (ДНК). Эти структуры [c.291]

    Типы нуклеиновых кислот. В 1930 г. были определены два типа нуклеиновых кислот — ДНК и РНК, различающиеся химическим составом, молекулярной массой, сложностью структуры молекул, а также выполняемыми функциями в организме. Название нуклеиновых кислот обусловлено присутствием в кислоте углевода если в состав нуклеиновой кислоты входит рибоза, то она называется рибонуклеиновая кислота (РНК), а если входит дезоксирибоза, то нуклеиновая кислота называется дезоксирибонуклеиновая (ДНК). Кроме углеводного компонента, отдельные типы нуклеиновых кислот различаются составом азотистых оснований и структурой молекулы. [c.216]

    Количественное определение нуклеиновых кислот. Принцип метода основан на выделении рибонуклеиновых (РНК) и дезоксирибонуклеиновых (ДНК) кислот и на дальнейшем их анализе прямыми и косвенными методами. К прямым методам относятся такие, которые включают гидролиз нуклеиновых кислот с последующим выделением из гидролизатов пуринов и пиримидинов и определение их хроматографическим методом. Хроматография позволяет производить точный микроанализ нуклеиновых кислот. Исследование пуринов и пиримидинов проводят в ультрафиолетовом свете, наблюдая флуоресценцию пятен на хроматограммах или в экстрактах, полученных из соответствующих участков хроматограмм. Кроме хроматографического метода, применяют также способ электрофореза на бумаге. [c.60]


    Синтез всех четырех теоретически возможных простых нуклеотидов, являющихся производными дезоксицитидина и тимидина, был осуществлен фосфорилированием соответствующим образом защищенных нуклеозидных производных с последующим удалением защищающих групп [464]. Дезокси-цитидин-5 -фосфат и тимидин-5 -фосфат были выделены из энзиматических гидролизатов дезоксирибонуклеиновых кислот [465] 3, 5 -дифосфаты дезоксицитидина и тимидина были обнаружены в кислых гидролизатах и идентифицированы с помощью синтеза [466]. В этих гидролизатах был также найден 3, 5 -дифосфат 5-метилдезоксицитидина [466] Уид и Куртней [467] обнаружили 3, 5 -дифосфат 5-оксиметилдезоксицитидина в кислых гидролизатах нуклеиновой кислоты, полученной из бактериофага. [c.258]

    Существуют два различных типа нуклеиновых кислот —дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК представляет собой генетический материал большинства организмов. В прокариотических клетках, кроме основной хромосомной ДНК, часто встречаются вне хромосомные ДНК — плазмиды. В эукариотических клетках основная масса ДНК расположена в клеточном ядре, где она связана с белками в хромосомах. Эукариотические клетки содержат ДНК также в различных органел-лах (митохондриях, хлоропластах). Что же касается РНК, то а клетках имеются матричные РНК (мРНК), рибосомные РНК (рРНК), транспортные РНК (тРНК) и ряд других кроме того, РНК входят в состав многих вирусов. [c.296]

    Функции, выполняемые ДНК и РНК в организме, а также их химические и физико-механические свойства различны. Помимо химического строения на свойства нуклеиновых кислот и их функции в организме весьма существенное влияние оказывают форма макромолекулы и надмолекулярные структуры, которые для рибонуклеиновых и дезоксирибонуклеиновых кислот также различны. [c.362]

    Рибонуклеиновые кислоты (сокращенно РНК) построены из рибо-нуклеозидов, связанных в положении 3,5 сложноэфирной связью с фосфорной кислотой. Дезоксирибонуклеиновые кислоты (которые сокращенно называют ДНК) построены из дезоксирибонуклеозидов, также связанных в положении 3,5 сложноэфирной связью с фосфорной кислотой. Вследствие этого нуклеиновые кислоты относятся к классу полиэфиров. [c.358]

    Недавно изучалась также возможность усвоения кукурузой нуклеиновых кислот как источника фосфорной кислоты. Опыты были поставлены по методу фракционированного питания (на 3 часа ежесуточно корни погружали в растворы рибонуклеиновой или дезоксирибонуклеиновой кислот, а остальное время содержали на питательной смеси без фосфора). Кукуруза не усваивала фосфора этих кислот. [c.235]

    Дезоксирибонуклеиновая кислота также образует с соляной кислотой при pH 1,6 аденин и гуанин, однако в большом количестве образуется высокомолекулярный остаток нуклеиновой кислоты. Не содержащий пурина высокомолекулярный продукт, называемый тиминовой кислотой , имеет молекулярный вес около 15 ООО и может быть очищен диализом против раствора соляной кислоты при pH 1,6 и выделен в виде апуриновой кислоты [86]. [c.441]

    В качестве примера применения полного уравнения для P Q) с целью получения сведений о конформации молекул, могут служить данные, приведенные на рис. 89 для дезоксирибонуклеиновой кислоты (ДНК). На этом рисунке приведен экспериментальный график зависимости 1/Р(9) от sin20/2 для ДНК, а также теоретические кривые, соответствующие уравнениям (18-24) и (18-25). Очевидно, что молекула нуклеиновой кислоты скорее напоминает хаотнческий клубок, чем стержень. (Уравнение Петерлина для [c.361]

    Как было указано ранее, нуклеиновые кислоты делятся на дезоксирибонуклеиновые (ДНК), являюцщеся полимерами (а точнее продуктами поликонденсации) дезоксирибонуклеотидов, и рибонуклеиновые (РНК) — полимеры рибонуклеотидов. Строение, а также физико-химическая характеристика и биологическая функция ДНК и РНК различны, и поэтому эти вопросы будут рассматриваться отдельно для каждого вида полимера. [c.246]

    Нуклеиновые кислоты — молекулы, состоящие из отдельных мононуклеотидов. Функцией нуклеиновых кислот является запись и запоминание (хранение) биологической информации. Особенно важны два типа нуклеиновых кислот дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК находится в ядре клетки и является главной информирующей молекулой клетки. Таким образом, функцией ДНК является снабжение клетки информацией для точного воспроизводства каждого вида клетки, включая синтез необходимых ферментов, а также дополнительного количества молекул ДНК. Иными словами ДНК участвуют в процессах деления клетки и передаче наследственных признаков. Следует отметить, что по своей структуре ДНК каждого из организмов отличаются друг от друга. Молекулы ДНК представляют собой длинные цепи, находящиеся в виде спаренных или двухнитяных спиралей. Длина двух таких молекул составляет примерно 20 А. Молекулярный вес ДНК колеблется в пределах 100 000 000—4 000 000 000. Каждое из звеньев цепи ДНК составляют четыре различных повторяющихся мононуклеотида. Такая последовательность называется кодом. Строение нитей ДНК представлено на схеме 16. Следует отметить, что в скелете [c.333]


    Колоночная хроматография весьма тщательно разработана и позволяет добиться прекрасного разделения однако низкомолекулярные осколки нуклеиновых кислот можно столь же успепшо разделить и методом ХТС на ионообменниках при меньшей затрате труда и времени. Хотя до настоящего времени метод ХТС применяли только для разделения пуриновых и пиримидиновых оснований, нуклеозидов и мононуклеотидов, можно полагать, что на слоях эктеола и ДЭАЭ можно разделить также олигонуклеотиды, анури-новые кислоты и высокомолекулярные рибо- и дезоксирибонуклеиновые кислоты. Этот метод может оказаться пригодным также для анализа углеводных компонентов нуклеиновых кислот (841 (см. стр. 456) — в виде их обратных комплексов (см, [211),—- а также о-фосфорной кислоты и полифос-форных кислот [77] (см. стр. 473). В связи с этим следует отметить анализ методом ХТС птеридинов [63], фармацевтически важных пуриновых и пиримидиновых производных (см. стр. 310) и водорастворимых витаминов (см.стр. 236). Особенно важной является работа Нюрнберга по анализу методом ХТС витаминов группы Ве и амида никотиновой кислоты [64]. [c.451]

    Нуклеиновые кислоты представляют собой линейные полимерные молекулы, состоящие из чередующихся углеводных и фосфоди-эфирных остатков. Фрагменты углеводов существуют в молжулах нуклеиновых кислот в- фураиозиой форме и связаны по атому С-1 с остатками пиримидиновых или пуриновых оснований (общее рассмотрение структуры нуклеиновых кислот см. [45]). Дезоксирибонуклеиновая кислота (ДНК) присутствует во всех живых клетках и служит носителем генетической информации. В качестве углеводного остатка в молекуле ДНК присутствует о-дезоксирибоза, а в качестве оснований — тимин. цитозин (пиримидиновые основания) и аденин, гуанин (пуриновые основания) (рис. 7.14, а). Определенная последовательность расположения пиримидиновых и пуриновых оснований в цепи ДНК связана с конкретной генетической информацией. Рибонуклеиновые кислоты (РНК) также представляют собой неразветвлеиные полимерные молекулы, отличающиеся от молекул ДНК тем, что содержат вместо дезоксирибозы о-рибозу (с группой ОН при атоме С-2) и урацил вместо тимина. РНК выполняют роль матриц для синтеза белка. [c.317]

    Нуклеиновые кислоты, подобно белкам, представляют собой высокомолекулярные соединения. Самые большие из всех известных макромолекул встречаются именно среди нуклеиновых кислот. Есть веские основания полагать, что у некоторых микроорганизмов вся их дезоксирибонуклеиновая кислота (ДНК) представлена, по существу, одной-единственной молекулой с молекулярным весом порядка 10 —10 и даже больше. Нуклеиновые кислоты, как показывает само их название, обладают сильно выраженными кислотными свойствами и при физиологических значениях pH несут отрицательный заряд высокой плотности. Вследствие этого они легко взаимодействуют в клетке с различного рода катионами, чаще всего с основными белками (такими, например, как гистоны и гистоноподобные комплексы), и с ионами щелочноземельных, металлов, особенно с а также [c.121]

    Измерения вязкости проводили почти исключительно с целью изучения действия облучения на водные растворы дезомсирибо-нуклеиновой кислоты. Действие облучения на вязкость было очень значительным, особенно, если измерения проводили при низкой скорости сдвига, Тиксотропный гелеобразный характер растворов этой кислоты значительно уменьшается даже при таких малых дозах, как 5600 р[124]. При высоких скоростях сдвига действие облучения уменьшается, но еще легко измеримо. Гель дезоксирибонуклеопротеида также очень чувствителен к облучению даже такие небольшие дозы, как 250 р, вызывают значительное снижение структурной вязкости [125, 126], Если гель дезоксирибонуклеопротеида приготовлен на 0,1 М растворе хлористого натрия, белок и дезоксирибонуклеиновая кислота диссоциируют в это же самое время ионное отталкивание вдоль цепочки нуклеопротеида уменьшается вследствие увеличения ионной силы, В результате спираль кислоты сокращается в размерах, межмолекулярное взаимодействие уменьшается и вязкость резко падает, стремясь к обычной характеристической вязкости. Рентгеновские лучи в дозах, которые резко снижают структурную вязкость, обладают крайне незначительным действием на характеристическую вязкость [126], [c.253]

    Как показывают эти наблюдения, само уменьшение вязкости еще не является доказательством, что разрывы цепочки полимера являются основной реакцией эту точку зрения мы настойчиво подчеркивали выше. Однако имеются и другие доказательства, подтверждающие, что действие Ионизирующего излучения на нуклеиновые кислоты вызывает их деградацию. Спарроу и Розенфельд [127] показали, что рентгеновские лучи снижают двойное лучепреломление в потоке дезоксирибонуклеогистоиа зобной железы и свободной дезоксирибонуклеиновой кислоты. Измерения констант седиментации и диффузии облученных нуклеиновых кислот [124, 129, 139] также показали, что происходит деградация, при которой образуются недиализуемые с )раг-менты [144], молекулярный вес которых колеблется в широки.х пределах. [c.257]

    Нуклеиновые кислоты мезоморфны в концентрированных водных растворах. Робинзон [25] впервые описал холестерическую форму дезоксирибонуклеиновой кислоты (ДНК). Рентгенограмма, установившая конфигурацию двойной спирали [26], была получена от, влажной ДНК, имеющей структуру вытянутого винта, т. е. структуру нематического геля. Нематическая структура ДНК в подобных же условиях была также изучена Луззати [27]. [c.278]

    Гель-хроматографию особенно целесообразно применять в тех случаях, когда необходимо очень быстро отделить высокомолекулярные компоненты от низкомолекулярных. На специально подготовленной колонке (3X6 сл) с сефадексом 0-25 (грубым) Эрлан-деру [25] удалось всего за 2 мин полностью отделить рибонуклеазу от воды, содержащей тритий. Этот быстрый аналитический метод позволяет изучить кинетику обмена трития и на этом основании сделать выводы о степени спирализации растворенного белка. Несколько позднее аналогичная методика была успешно использована при исследовании вторичной структуры растворимых рибонуклеиновых кислот [26] и дезоксирибонуклеиновых кислот [27]. Конечно, нуклеиновые кислоты также могут быть модифицированы химическим путем, например действием диазотированной сульфаниловой кислоты [28]. Избыток реагента и побочные продукты реакции удаляют на сефадексе 0-50. [c.146]

    Изучены также комплексы нуклеиновых кислот с низкомолекулярными соединениями. Комплекс дезоксирибонуклеиновой кислоты и актиномицнна i легко отделить от избытка антибиотика на сефадексе G-50 [36]. Образование такого комплекса специфично для ДНК и связано с механизмом действия актиномицнна. Впоследствии это явление было детально изучено Хартманом и др. [37]. [c.149]

    Мейсель и Корчагин [12] на выделенных из клеток нуклеиновых кислотах и их производных показали, что акридиновый оранжевый, связываясь с дезоксирибонуклеиновой кислотой (ДНК) или ДНК-протеидом, придает им ярко-зеленую люминесценцию, в то время как комплексы этого флуорохрома с рибонуклеиновой кислотой (РНК) и ее протеидом люмипе-сцируют красным светом. Такие соотношения ими были обнаружены в случае прижизненного флуорохромирования клеток. Акридиновый оранжевый в этих условиях оказался весьма полезным цитохимическим реактивом. Аналогичные данные на фиксированных объектах были получены Шюммельфедером [6], а также Берталанфи [47] и Армстронгом [48]. Различная степень связывания акридинового оранжевого с ДНК и РНК зависит, по-видимому, от различной степени полимеризации этих кислот. [c.315]

    Установлено также, что нуклеиновые кислоты играют большую роль в биосинтезе белка (Б. В. Кедровский, Браше, Касперсон). Содержание рибонуклеиновых кислот (РНК) или скорость их обновления в клетках больше в тех пунктах, где имеет место интенсивный синтез белка. В то же время, по-видимому, дезоксирибонуклеиновые кислоты (ДНК) каким-то образом определяют специфичность этого синтеза. [c.328]

    Азот — один из основных элементов, необходимых для растений. Он входит во все простые и сложные белки, которые являются главной составной частью протоплазмы растительных клеток. Азот также находится в составе нуклеиновых кислот (рибонуклеийовая — РНК и дезоксирибонуклеиновая — ДНК), играющих исключительно важную роль в обмене веществ в организме. Азот содержится в хлорофилле, фосфатидах, алкалоидах, в некоторых витаминах, ферментах и многих других органических веществах растительных клеток. [c.182]

    Органические фосфаты играют важную роль в биологических процессах. Фосфаты сахаров важны при фотосинтезе нуклеиновые кислоты содержат также фосфат. Примерами таких фосфатов являются глюкоза-6-фосфорпая кислота (20.XVI) и дезоксирибонуклеиновая кислота (20.XVII, фрагмент цепи). [c.369]

    Специфическую последовательность аминокислот в белках определяют две встречающиеся в природе нуклеиновые кислоты— дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК), — также имеющие цепочечное строение (структура и свойства этих кислот рассмотрены в гл. XVII—XIX). В клетке содержится набор различных молекул нуклеиновых кислот. ДНК представляет собой генетический материал и находится главным образом в хромосомах последовательность входящих в ее состав оснований служит генетическим кодом клетки. Две различные молекулы ДНК можно сравнить с двумя книгами, которые внешне совершенно одинаковы, но тем не менее одна из них повествует, скажем, о слонах, а другая — о муравьях. Если учесть, какое множество признаков должно быть закодировано в ДНК, то станет ясным, почему в клетке может существовать много разных видов ДНК. В клетке имеется также несколько различных видов РНК. Последняя содержится преимущественно в цитоплазме — там, где происходит процесс синтеза белка. Вопрос о том, какую роль играют разные виды РНК в синтезе белка, рассмотрен в разд. 4 гл. XX. [c.20]

    Электрофоретически можно разделять также и нуклеиновые кислоты, например, отделять рибонуклеиновую кислоту от дезоксирибонуклеиновой. Используя гель в качестве поддерживающей среды, можно увеличить эффективность разделения, так как размеры молекул рибонуклеиновой и дезоксирибонуклеиновой кислот сильно отличаются друг от друга. [c.104]

    Читателю, специализирующемуся в области биохимии белков и нуклеиновых кислот, можно рекомендовать статью Гинодмана Хроматография белков иа ионообмен-ииках и фракционирование смесей, содержащих белки, на колонках с сефадексом в сб. Современные методы в биохимии , под ред. Ореховича В. Н., I, изд-во Медицина , М., 1964. В этой статье весьма подробно и полно рассмотрены практические приемы работы с колонками, заполненными различными гелями, а также некоторые теоретические положения гель-проникающей хроматографии. Данные, полученные при фракционировании дезоксирибонуклеиновых кислот на колонках с гелями, приводит в гл. Выделение и фракционирование нуклеиновых кислот Кирби в сб. Нуклеиновые кислоты , под ред. Збарского И. Б., изд-во Мир , М., 1966. В этом же сборнике Штэелин в гп. Хроматография олигонуклеотидов и полинуклеотидов на колонках обсуждает результаты фракционирования указанных соединений на колонках с ДЭЛЭ-целлюлозой и другими замещенными целлюлозными аниопообменииками, сефадексом и метилированным альбумином.— Прим. перев. [c.110]

    Первый нуклеотид, инозиновая кислота (по-гречески — мышечная ткань), был выделен Либихом [2] в 1847 г. из мясного экстракта отчасти как результат полелп1ки, поднятой Берцелиусом по поводу наличия креатина в сыром и вареном мясе). С тех пор было выделено большое число мононуклеотидов, как правило, 5 -фосфаты, хотя в яде тигровых змей и родственных видов был найден также аденозин-З -фосфат 13]. Эти соединения выделяют прямой экстракцией тканей или организмов 14—9], в которых они обычно присутствуют в небольших количествах в качестве промежуточных соеди-нени1 обмена. Однако основным источником мононуклеотидов являются их полимерные производные, нуклеиновые кислоты. При щелочном гидролизе в мягких условиях [10, 11] рибонуклеиновой кислоты образуется смесь 2 - и З -фосфатов нуклеозидов, которую можно легко разделить с помощью ионообменной хроматографии 112], Для выделения аналогичных 5 -эфиров требуется применение ферментативного гидролиза, как правило, с использованием фосфо-диэстеразы змеиного яда 113, 14]. Подобная ферментативная обработка дезоксирибонуклеиновой кислоты после предварительной обработки дезоксирибонуклеазой приводит к дезоксинуклеозид-5 -фосфатаы [15—17]. Очищенная диэстераза змеиного яда значи- [c.123]

    В то время было известно, что рибонуклеиновые кислоты могут быть гидролизованы щелочью до мононуклеотидов, которые, как тогда считали, были исключительно нуклеозид-3 -фосфатами. Общий план строения нуклеиновых кислот с 2 —З -фосфодиэфирными связями был предложен Левиным и Типсоном [71], причем было сделано допущение, что 2 -связь гораздо менее устойчива, чем З -фос-фоэфирная связь, и обусловливает таким образом образование при щелочном гидролизе исключительно нуклеозид-З -фосфатов. Однако, когда рибонуклеиновую кислоту обработали змеиным ядом (который содержит фосфомоноэстеразу, специфичную для нуклеозид-З -фосфатов), то получили неорганический фосфат и нуклеозиды [72, 73]. Далее, изучение рибонуклеиновой кислоты методом дифракции рентгеновских лучей, проведенное Астбери, позволило предположить, что основной межнуклеотидной связью является скорее 2 —5 или 3 —5, чем 2 —3 [74]. С другой стороны, прямого химического доказательства наличия 5 -фосфатной связи не существовало, и отсутствие 5 -фосфорилированных производных в кислых гидролизатах рибонуклеиновой кислоты, несмотря на их известную стабильность, действительно находилось в явном противоречии с предположением о 2 (или 3 ) — 5 -межнуклеотидной связи. Устойчивость дезоксирибонуклеиновой кислоты (неизбежно 3 —5 -связанной) по отношению к щелочи в противоположность неустойчивости рибонуклеиновой кислоты также указывало, как считали в то время, на различие в типах связи. В противоположность этому при действии панкреатической рибонуклеазы на рибонуклеиновую кислоту получается смесь олигонуклеотидов, устойчивых к перио- [c.372]

    Проблема основной схемы строения нуклеиновых кислот была решена в 1952 г. Брауном и Тоддом, которым удалось примирить казавшиеся противоречивыми данные [81]. Предварительно в исследованиях с применением радиоактивного фосфора было показано, что катализируемая кислотой изомеризация а- или Р-глицерофосфа-тов впутримолекулярна и проходит через образование промежуточного циклического фосфата [82]. Было также известно, что, хотя а-глицерофосфат устойчив к щелочи, его метиловый эфир при гидролизе щелочью или разбавленной кислотой легко превращается в метанол и смесь а- и Р-глицерофосфатов. Для объяснения значительно меньшей устойчивости таких диэфиров фосфорной кислоты, содержащих остаток глицерина (или этиленгликоля), по сравнению с простыми фосфодиэфирами, не имеющими смежной гидроксильной группы, было постулировано образование промежуточного три-этерифицированного ортоэфира циклофосфата [83, 84]. Фоно предположил (в 1947 г.), что быстрая деградация рибонуклеиновой кислоты при обработке щелочью, в противоположность устойчивости дезоксирибонуклеиновой кислоты, зависит от присутствия цис-гидроксильной группы при атоме Сг рибозного остатка (отсутствую- [c.373]


Смотреть страницы где упоминается термин Дезоксирибонуклеиновая кислота см также Нуклеиновые кислоты: [c.196]    [c.442]    [c.212]    [c.185]    [c.1045]    [c.7]    [c.196]    [c.436]    [c.13]    [c.560]    [c.446]    [c.409]    [c.416]    [c.417]   
Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дезоксирибонуклеиновые кислоты

Нуклеиновые кислоты

Нуклеиновые кислоты. также Дезоксирибонуклеиновая кислота, Рибонуклеиновая

Нуклеиновые кислоты. также Дезоксирибонуклеиновая кислота, Рибонуклеиновая кислота



© 2025 chem21.info Реклама на сайте