Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии трансформация

    Использование аналогий с моделью хищник — жертва Вольтерра— Лотка (модель 13, табл. VI-3), в которой аналогом жертвы является РОВ, а аналогом хищника — бактерии, позволило получить сравнительно простую расчетную формулу, с помощью которой, как и с помощью автокаталитического уравнения, описываются кривые трансформации органического вещества с начальным периодом индукции, а также прохождение концентраций бактерий через максимум. Однако из-за широкого [c.157]


    У зеленых растений трансформация энергии происходит на мембранах тилакоидов хлоропластов, а у фотосинтезирующих бактерий— на мембранах хроматофоров. Увеличение ионной проводимости мембран приводит к рассеиванию энергии в виде теплоты, а разрушение мембран — к полной потере способности к аккумуляции энергии. [c.160]

    Наиболее полно гибкость поликетидного биосинтеза используется, вероятно, бактериями стрептомицетами, которые продуцируют огромное число различных соединений все эти соединения были открыты в ходе поиска новых антибиотиков. На примере этих соединений видно все разнообразие типов сборки различных ацильных предшественников, различие в уровнях восстановления после каждой стадии сборки, специфические типы складывания молекул продуктов сборки, дальнейших контролируемых трансформаций заметна явная тенденция к преимущественному образованию макроциклических соединений по механизмам, описанным в предыдущем разделе. [c.459]

    Рекомбинантная ДНК проникает в клетки бактерий, характеризующихся низкой частотой трансформации, таким же образом, как плазмидная ДНК из донорской клетки в реципиент-ную в естественных условиях. Некоторые плазмиды обладают способностью создавать межклеточные контакты, через которые они и переходят из одной клетки в другую. Образование контактов между донорной и реципиентной клетками обеспечивается конъюгативными свойствами плазмид, а сам перенос ДНК - мобилизационными. Большинство плазмид, которые используются в работах с рекомбинантными ДНК, не обладают конъюгативными функциями и поэтому не могут переходить в реципиентные клетки путем конъюгации. Однако проникновение в клетку некоторых плазмидных векторов все-таки происходит при наличии в этой клетке второй плазмиды, обладающей конъюгативными свойствами. Таким образом, введя в клетку, несущую мобилизуемый плазмидный вектор, плазмиду с конъюгативными функциями, можно трансформировать клетки-реципиенты, с трудом поддающиеся трансформации другими способами. [c.77]

    Взаимодополняющие процессы ограничения и модификации затрагивают область явлений, которая гораздо шире простого развития фагов, так как они обеспечивают клетке способность узнавать и отвергать внедрение чужеродной ДНК. Так, ограничение и модификация играют важную роль во всех рассмотренных в предыдущих главах процессах переноса генов между бактериями — трансформации, конъюгации и трансдукции. Если бактерия-реципиент содержит ограничивающие нуклеазы, действующие на нуклеотидные последовательности ДНК донора, которые не метилированы модифицирующими ферментами бактерии-донора, то при любом процессе генетической рекомбинации вероятность включения генов донора в геном реципиента будет очень мала. С еще более широкой точки зрения приобретение организмом системы ограничения н модификации неприемлемой ДНК может быть первым шагом на пути образования новых видов. Такая защита от скрещивания с организмами, в других отношениях ничем не отличающимися, обеспечивает репродуктивную изоляцию, необходимую для видообразования. Так или иначе, открытие специфического метилирования и разрывов определенных точек ДНК расширило наши представления о специфичности генетического вещества, которая ранее считалась обусловленной исключительно перестановками только четырех пуриновых и пиримидиновых оснований полинуклеотидной цепи ДНК. [c.373]


    Клонирование ДНК, суть которого сводится к введению ДНК-фрагмента в самореплицирующийся генетический аппарат (плазмиду или вирус), который используют для трансформации бактерий. Бактериальная клетка после трансформации способна воспроизводить этот фрагмент во многих миллионах идентичных копий. [c.106]

    Для того, чтобы получить величины остаточных концентраций растворенного и взвешенного органического вещества как результат моделирования, а не численного подбора, необходимо учитывать потоки метаболических выделений популяций разных трофических уровней. Получены многочисленные оценки потоков твердых, жидких и газообразных метаболических выделений с помощью простых балансовых соотношений при анализе данных экспериментальных наблюдений. На рис. У1-2 [58] приведена типичная диаграмма потока углерода при трансформации РОВ в присутствии бактерий и простейших микроорганизмов. Поскольку концентрации каждой из компонент, представленной на диаграмме, определяются сложным динамическим равновесием между процессами поступления и расхода вещества, такие оценки, по-видимому, следует считать весьма ориентировочными. Сравнительно надежные оценки метаболических потоков могут быть получены при численном имитационном моделировании с помощью ЭВМ динамики всех основных компонент при сопоставлении с результатами детальных экспериментальных наблюдений. [c.158]

    Бактерии быстро размножаются и легко приспосабливаются к изменяющимся физическим, химическим и биологическим условиям среды. Последнее объясняется тем, что они могут адаптивно образовывать ферменты, необходимые для трансформации питательных.. сред. [c.24]

    Установлено, что применение для трансформации эпоксида диких штаммов указанных бактерий обеспечивает высокий выход только остаточного энантиомера субстрата 31, в то время как продукт реакции 32 имеет низкий выход вследствие его дальнейшей деградации под действием клеточных ферментов [c.448]

    Важность обмена генетическим материалом для эволюции прокариот подтверждается тем, что многие бактерии имеют другой механиз.м обмена генами — естественную трансформацию. В ходе этого процесса бактерии активно поглощают ДНК, оказавшуюся в среде. Если поглощенная ДНК гомологична внутриклеточной, то воз.можна рекомбинация между ними. Для того чтобы повысить вероятность попадания в клетку именно гомологичной ДНК, некоторые бактерии амеют систему дискриминации, узнающую определенную последовательность ДНК, часто встречающуюся у этих бактерий, но редко у других, и позвачяющую транспорт в клетку лишь тех. молекул ДНК, которые отмечены такой последовательностью. Проникновение в клетку произвольной ДНК из среды потенциально опасно таки.м путе.м могли бы проникать патогенные агенты, например вирусы. Видимо, поэтому при естественной трансформации в клетку проникает лишь одна линейная цепь ДНК, а вторая в ходе транспорта деградирует. В таком виде ДНК относительно безвредна она рекомбинирует с клеточной ДНК при наличии гомологичных участков, а при отсутствии гомологии, как правило, де- [c.128]

    Наряду с бактериями важную роль в трансформации нефтяного загрязнения играют простейшие, например инфузории. Поскольку окисление нефти бактериями, находящимися в естественной морской среде, происходит на границе нефть-морская вода, со временем вокруг нефтяных капе.пь образуется пленка из отмерших микробов, которая препятствует дальнейшему окислению нефти. Инфузории, используя бактерии в качестве питательной среды, разрушают пленку и способствуют лучшему контакту нефти с морской водой, при этом они могут заглатывать мельчайшие капли нефти, однако неизвестно, перерабатывается ли она ферментными системами этих организмов. [c.61]

    После того как были установлены молекулярные основы трансформации бактерий (переноса генов из одного штамма в другой), у ученых появилась надежда, что аналогичный механизм — введение нормальных генов в дефектные соматические клетки — можно будет использовать для лечения наследственных заболеваний человека. Перспективы генной коррекции соматических клеток стали более реальными в 1980-х гг. к этому времени были [c.484]

    Основным элементом аэробного биоценоза является бактериальная клетка. В клетке происходят разнообразные многоэтапные процессы трансформации органических веществ. В составе биоценоза имеются бактерии, которые способны потреблять только определенные углеводороды или аминокислоты. Наряду с этим имеется большое число бактерий, участвующих в нескольких этапах разложения органического вещества. Они могут использовать сначала белки, а затем углеводы, окислять спирты, а затем кислоты или спирты и альдегиды и т. д. Одни виды микробов могут вести распад органического вещества до конца, например до образования углекислого газа и воды, другие только до образования промежуточных продуктов. По этой причине при очистке сточных вод дают необходимый эффект не отдельные культуры микроорганизмов, а их естественный комплекс, включая и более высокоразвитые виды [Роговская Ц. И., 1967 г.]. [c.209]

    Ниже мы рассмотрим закономерности биохимической кинетики применительно к моделированию процессов биологической очистки сточных вод и разработке моделей трансформации органических веществ в водных экосистемах. Принципы моделирования и расчета биохимических реакторов изложены в [54]. Биохимический процесс окисления кислородом органических веществ в сточных водах осуществляется сообществом микроорганизмов (биоценозом), включающим множество различных бактерий, связанных между собой в единый комплекс сложными взаимоотношениями (метабиоза, симбиоза и антогонизма). [c.146]

    В трансформации соединений фосфора, как и азотг., принимают участие организмы практически всех трофических уровней. Растворенные фосфаты (DIP) потребляются водорослями и бактериями и трансформируются в органические соединения — эфиры фосфорной кислоты. Этот органический фосфор живого вещества включается в пищевую цепь на всех уровнях. В процессе жизнедеятельности организмов выделяются фосфаты и растворенные фосфорорганические соединения (DOP), а также образуется костное взвешенное фосфорсодержащее органическое вещество — детритный фосфор (Dp). При автолизе в воду весьма быстро поступает 30—40% DOP, которые утилизируются гетеротрофными бактериями, а также гидролизуются внеклеточной фосфатазой до DIP. Кроме того, DOP, как показано в многочисленных работах, может непосредственно ассимилироваться фитопланктоном. [c.160]


    Но на это указывали эксперименты Освальда Эвери по трансформации бактерий. Он показал, что наследственность передается с помощью ДНК. Правда, многие тогда считали бактерии совсем особой формой жизни, где все не так, как у людей. Кроме того, большинство биохимиков думали, что секрет жизни — в ферментах, а нуклеиновые кислоты не проявляли свойств ферментов. [c.137]

    ДНК хранит наследственную информацию. Подтверждением этого служит явление трансформации, наблюдаемое у бактерий и открытое также в ьсультуре клеток человека. Сущность явления заключается в превращении одного генетического типа клеток в другой путем изменения природы ДНК. Так, удалось получить штамм капсулированных и вирулентных пневмококков из исходного штамма, не обладающего этими признаками, путем внесения в среду ДНК, выделенной из капсулированного (и вирулентного) штамма. С нуклеопротеинами и соответственно нуклеиновыми кислотами непосредственно связаны, кроме того, такие биологические процессы, как митоз, мейоз, эмбриональный и злокачественный рост и др. [c.86]

    У некоторых бактерий, в особенности грамположительных, существует процесс естественной трансформации (см. раздел 4 этой главы). Находясь в особом, ко.мпетентно.м, состоянии, эти бактерии способны получать ДНК, оказавшуюся в среде (напри.мер, ДНК из погибших клеток), в частности плазмидную ДНК. Это еще один путь перемещения плазмид из клетки в клетку. При трансформации грамположительных бактерий в клетку проникает лишь одна линейная цепь ДНК. Поэтому для восстановления кольцевого плаз- [c.111]

    В 1928 г. на клетках Diplo o us pneumoniae были выполнены важные эксперименты, результаты которых показали, что генетическая информация, контролирующая свойства капсульных полисахаридов (гл. 5, разд. Г), может передаваться от одного штамма бактерий к другому. Согласно этим экспериментам, какое-то вещество, присутствующее в убитых клетках и бесклеточных экстрактах, стабильно изменяет свойства капсул, подвергнутых воздействию этого вещества. Данное явление, получившее название трансформация бактерий, много лет оставалось загадкой. В то время когда были выполнены эти эксперименты, не было даже и намека на генетическую роль нуклеиновых кислот, которые воспринимались всеми как довольно странный материал. Более того, к тому времени еще не была доказана ковалентная природа связей в нуклеиновых кислотах. Широко было принято представление о тетрануклеотиде как о повторяющейся единице какого-то регулярного полимера. Обычно считалось, что гены имеют белковую природу. [c.183]

    В 1944 г. Эйвери и его сотрудники показали, что очищенные экстракты ДНК пневмококков могут вызвать трансформацию бактерий [c.183]

    Таким образом, эксперименты по трансформации бактерий убедительно показали, что ДНК является генетическим материалом. На это указывали также результаты некоторых других экспериментов. Было обнаружено, например, что ДНК локализуется в ядрах эукариотических клеток. Оказалось, что абсолютное количество ДНК в расчете на одну клетку для организма данного вида — величина постоянная. Тот факт, что ДНК представляет собой генетический материал определенных вирусов, доказали в 1952 г. Д. Херши и Чейз [8а], обнаружившие, что при заражении клетки вирусом бактерий (бактериофагом) вирусная ДНК проникает внутрь бактерии, а белковая оболочка остается снаружи. Это удалось продемонстрировать, приготовив два типа меченых бактё-риофагов Т2 (дополнение 4-Д). В одном из них ДНК была мечена изотопом а у другого в белок был включен изотоп Клетки Е. соИ заражали препаратами меченых фагов, а затем энергично перемешивали в гомогенизаторе Уоринга для удаления фаговых частиц. В результате произошло следующее около 80% отделилось от бактерии, большая же часть Р проникала внутрь бактерий и могла быть обнаружена даже в бактериофагах следующих поколений [3]. [c.183]

    Практически общий способ трансформации и трансфекции основан на том, что при обработке клеток бактерий a l2 их мембрана становится проницаемой для ДНК. Однако эффективность проникновения экзогенной ДНК в клетку довольно низка. Поэтому среди бактерий, подвергшихся трансформации, только небольшая часть оказывается трансформированной. Отделение ее от общей массы осуществляется в процессе клонирования. Для клонирования бактериальную суспензию определенной концентрации выливают на твердую питательную среду, например на агар с питательными добавками в чашке Петри из расчета 5—10 бактерий на 1 см поверхности. Бактериальная клетка на поверхности агара начинает делиться с образованием в итоге маленькой колонии, похожей на шляпку гриба. Эта колония называется клоном, причем из каждой клетки образуется свой клон, все клетки которого имеют свойства бактерии-родоначальника. [c.121]

    Микробиологическая трансформация бету липовой кислоты -перспективного противоракового средства, вызывающего апоптоз опухолевых клеток, может привести к образованию продуктов с более высокой цитотоксической активностью. В частности, при трансформации бетулиновой кислоты с помощью бактерий рода Ba illus образуются гидроксилированные производные бетулиновой кислоты, которые проявляют в 3-20 раз более высокую противоопухолевую активность по отношению к клеткам меланомы человека, чем исходное соединение. Однако, описанные в литературе штаммы образуют продукты трансформации бетулиновой кислоты с низким выходом (не более 1-4 %), что ограничивает их применение в препаративных целях. [c.61]

    В числе механизмов разрушения ПАУ особенно важны два трансформация конкретными видами микроорганизмов и фотохимическая деструкция. Старовойтов в 1975 г. показал, что в почвах, зафязненных нафталином, присутствуют бактерии рода Pseudomonas, которые могут использовать нафталин как единственный источник углерода. Катаболизм нафталина бактериями этой фуппы включает стадии последовательного образования сначала дигидро- и диоксинафталинов, затем через ряд промежуточных продуктов — салицилового альдегида и салициловой кислоты, а в конце цепи трансформации появляются фумаровая и пировинофадная кислоты. [c.104]

    Биосинтез тетрациклиновых антибиотиков из бактерий стрептомицетов является другим важным примером последовательных превращений поликетидных предщественников особый интерес представляет осуществление параллельных трансформаций различных субстратов. Эти превращения изучены достаточно детально [73,74] установлено, что центральный путь, ведущий к 7-хлор-тетрациклину, реализуется так, как это показано на схеме (29). [c.452]

    Молекулярная биология исследует молекулярную природу основных явлений жизни, прежде всего наследственности и изменчивости. Эти явления определяются строением и свойствами нуклеиновых кислот — информационных макромолекул. Становление молекулярной биологии связано с открытием генетической роли нуклеиновых кислот и с ее расшифровкой. Гены, т. е. фрагменты молекул ДНК и РНК, программируют синтез белков. Эти молекулы являются законодательными , а белки — исполнительными . Молекулярная биология началась с открытия трансформации бактерий посредством ДНК (Эвери, Мак-Леод, Мак-Карти, 1944). Молекулярная биология ищет объяснение биологических явлений в химии и молекулярной физике. Она изучает широкую совокупность жизненных процессов, в том числе ферментативный катализ, мембранный транспорт, механохимические явления и т. д. В отличие от классической биохимии, молекулярная биология объединяется с физикой и ее специфика состоит именно в физических аспектах исследований и задач. [c.220]

    Молекулярная биология исследует молекулярную природу основных явлений жизни, прежде всего наследственности и изменчивости. Эти явления определяются строением и свойствами нуклеиновых кислот, и возникновение молекулярной биологии связано с открытием их биологической функциональности. Годом рождения молекулярной биологии можно считать 1944, когда Эвери, Мак-Леод и Мак-Карти [1] открыли трансформацию бактерий посредством ДНК (см. стр. 486). Молекулярная биология ищет объяснение биологических явлений в химии и молекулярной физике. Тем самым, биология включается в единую область точного естествознания. Молекулярная биология изучает не только наследственность и изменчивость, но всю со-вокуп-ность жизненных процессов — ферментативный катализ, мембранный транспорт, механохимические явления и т.д. Реализуется общий атомно-молекулярный подход к биологическим проблемам. [c.483]

    Грамотрицательная почвенная бактерия Agroba terium tumefa iens — фитопатоген, который в процессе своего жизненного цикла трансформирует клетки растений. Эта трансформация приводит к образованию корончатого галла -опухоли, нарушающей нормальный рост растения (рис. 17.1). Этой болезни, имеющей серьезные агрономические последствия, подвержены только двудольные растения, в частности виноград, косточковые фруктовые деревья, розы. [c.373]


Смотреть страницы где упоминается термин Бактерии трансформация: [c.344]    [c.159]    [c.162]    [c.122]    [c.183]    [c.295]    [c.230]    [c.5]    [c.42]    [c.61]    [c.461]    [c.499]    [c.211]    [c.486]    [c.77]    [c.322]    [c.342]    [c.382]    [c.386]    [c.404]   
Биохимия Том 3 (1980) -- [ c.183 ]

Молекулярная биофизика (1975) -- [ c.486 ]

Молекулярная генетика (1974) -- [ c.156 , c.240 ]




ПОИСК







© 2025 chem21.info Реклама на сайте