Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Главные фотосинтетические пигменты

    ГЛАВНЫЕ ФОТОСИНТЕТИЧЕСКИЕ ПИГМЕНТЫ [c.320]

    В остальном выбор хлорофилла в качестве главного фотосинтетического пигмента растений должен вызываться скорее его фотохимическими свойствами, чем егр спектром поглощения. [c.430]

    Главный фотосинтетический пигмент — хлорофилл, поэтому они имеют зеленый цвет. Содержат хлорофиллы а и Ь (как у растений) [c.50]

    Иногда в вакуолях содержатся растворимые пигменты. В эту группу входят анто-цианины, имеющие красную, синюю или пурпурную окраску, и некоторые родственные соединения, окрашенные в желтый или кремовый цвет. Именно эти пигменты главным образом и определяют окраску цветков (например, у роз, фиалок и георгин), а также окраску плодов, почек и листьев. У листьев они обусловливают различные оттенки осенней окраски, которая зависит также от фотосинтетических пигментов, содержащихся в хлоропластах. Окраска играет роль в привлечении насекомых, птиц и некоторых других животных, участвующих в опылении растений и в распространении семян. [c.207]


    Фотосинтетический аппарат растений характеризуется особым химическим составом, отличающим его от остальных участков клеток. Главное отличие заключается в ТОМ, что только в хроматофорах и хлоропластах содержатся пигменты, непосредственно участвующие в осуществлении процесса фотосинтеза. Эти пигменты подразделяются на три группы зеленые (порфирины), желтые (каротиноиды) и растительные желчные пигменты — фикобилины, являющиеся вспомогательными пигментами некоторых водорослей. [c.35]

    Практически не существует принципиальных различий между структурами антенн и молекул хлорофилла из центров фотореакций. Они различаются лишь способом локализации молекул относительно друг друга в матрице фотосинтетической мембраны [155]. Из-за иной природы энергии первобытной эры (наличие сильной УФ-радиации) и, конечно, из-за изменений окружающей среды во времени структуры фотовозбуждаемых молекул, а также надмолекулярные матрицы должны были отличаться от современных. Следовательно, существующая пропасть между двумя фотосинтезирующими системами была преодолена лишь в ходе эволюции. Представляется естественным, чтобы имитирующие эволюцию эксперименты были направлены на выявление некоторых более простых фотовозбуждаемых пигментов, которые могли появиться одновременно с другими главными биополимерными структурами и участвовали в надмолекулярных образованиях. В табл. 6 содержатся данные о синтезе порфиринов в этих условиях. [c.32]

    Вместе с тем механизм улавливания света у бактерий очень сходен с соответствующим механизмом у растений, хотя фотосинтетические единицы у первых меньше. Так же как в хлоропластах, свет поглощается пигментами антенны, энергия воз- буждения быстро передается на реакционный центр и используется в качестве движущей силы в транспорте электронов. Главным фотоактивным пигментом является бактериохлорофилл (БХл), в большинстве случаев бактериохлорофилл а (10.15), а в некоторых случаях (например, у Якойорзеийото- [c.356]

    Главным фактором, регулирующим развитие фотосинтетических мембран и синтез пигментов, по-видимому, является парциальное давление кислорода. Если оно выше определенного уровня, дыхание может происходить с достаточной эффективностью, но образования фотосинтетических мембран или синтеза пигментов при этом не наблюдается. Низкое парциальное давление кислорода стимулирует образование фотосинтетического аппарата и пигментов, в первую очередь реакционных центров и главного комплекса светособирающей антенны Р-875. В ответ на изменение интенсивности освещения изменяется и состав пигментов. Так, у Rhodopseudomonas spp., свет низкой интенсивности стимулирует синтез бактериохлорофилла и каротиноидов, поскольку происходит формирование вторичного комплекса светособирающей антенны Р-800-850. Свет высокой интенсивности подавляет формирование этого комплекса, и в результате содержание пигментов снижается. В случае Rhodospirillum rubrum, которая не содержит антенны Р-800-850, содержание пигмента главной светособирающей антенны Р-875 регулируется интенсивностью освещения. О том, как протекают и регулируются процессы, в ходе которых фотосинтетические пигменты образуются и включаются в мембраны, известно немного. Гены, контролирующие синтез хлорофилла и каротиноидов, а также, возможно, развитие активного фотосинтетического аппарата в целом, локализованы в хромосоме (но не в плазмиде) и расположены очень близко друг к другу. В кодировании фотосинтетического аппарата может участвовать одна большая генетическая единица. [c.364]


    Благодаря фотосинтетическим пигментам достаточно густые суспензии фототрофных бактерий имеют зеленую, сине-зеленую, пурпурно-фиоле-товую, крйсную, коричневую или розовую окраску. Цвет зависит от природы и количественного соотношения пигментов. Отдельные пигменты можно распознать даже по спектрам поглощения интактных клеток (ри т 12.10). Хлорофиллы, например, ответственны за максимумы поглощения в синей ( < 450 нм) и в красной и инфракрасной (650-1100 йм) областях спектра. Поглощение в области 400-550 нм обусловлено главным образом каротиноидами, а у цианобактерий в области 550-650 нм-фикобилипротеинами. [c.375]

    Локализация пигментов. Фотосинтетические пигменты у пурпурных бактерий связаны с внутренними мембранами-везикулярными или трубчатыми выростами плазматической мембраны, которые сохраняют с ней связь, но проникают в толщу цитоплазмы. У разных видов бактерий такие мембраны имеют разную форму. Это могут быть трубочки, везикулы (пузырьки) или скопления ламелл (располагающихся концентрически или же в виде стопок) иногда они заполняют всю внутренность клетки (см. рис. 2.23). Фрагменты мембран, освобождаемые при разрушении клеток в виде везикул и отделяемые центрифугированием, называют хроматофорами . В клетках зеленых бактерий пигменты связаны с различными структурами светособирающие пигменты-главным образом с хлоросомами, а пигменты реакционных центров-с плазматической мембраной (см, рис. 2.4 и 12.9). [c.378]

    Для эффективного протекания процесса фотосинтеза необходимо возбуждение более чем одного фотосинтетически активного пигмента. Этот результат предполагает возможность участия двух главных процессов в реакции преобразования энергии при фотосинтезе. Квантовый выход фотосинтеза падает при длинах волн света больше, чем длина волны максимума поглощения в красной области (эффект Эмерсона, или красное падение ), хотя поглощение в этой области (675—720 нм) продолжает приводить к заселению уровня Si" хлорофилла а. Однако если к возбуждающему световому пучку добавляется более коротковолновый свет (Ж670 нм), то квантовый выход фотосинтеза существенно возрастает. Низкие квантовые выходы фотосинтеза, получаемые при длинноволновом освещении, могут быть подняты до нормальных значений одновременным освещением коротковолновым светом. [c.233]

    Фотосинтетическая единица системы I состоит из 300—400 молекул нефлуоресцирующего Хл а. Главный максимум поглощения такой единицы расположен в дальней красной области (см , табл. 37). С фотосинтетической единящей связана одна молекула специализированного фотоокисляющегося пигмента Р700 (Х ах = 700—705 ммк = 0,430 в), непосредственно уча- [c.322]

    Квантовый выход первичных процессов фотосинтеза достаточно высок. Поэтому указанное сокращение длительности и выхода флуоресценции пигментов в живых системах должно быть главным образом обусловлено не тепловыми потерями, а процессом фотохимической дезактивации синглетного возбуждения состояния S в реакционных центрах фотосинтеза. Независимо от механизма этого процесса РЦ следует рассматривать как естественные фотохимические тушители флуоресценции молекул пигментов светособирающей матрицы. Можно оценить эффективность этого тушения, считая, что в фотосинтетической мембране значения констант р, д, г (см. 1 гл. xxvn) сохраняются неизменными, а процесс тушения флуоресценции при захвате энергии реакционными центрами эквивалентен фотохимической дезактивации кф состояния S молекул антенны. Тогда, подставляя величины т. Б, xi, Bi в формулы (XXVn.l.l)-(XXVn.l.9), найдем, что эффективность использования возбуждения реакционными центрами составляет Ф 0,93 -j- 0,95 (Борисов А. Ю.). [c.296]


Смотреть страницы где упоминается термин Главные фотосинтетические пигменты: [c.74]    [c.50]    [c.364]    [c.714]    [c.129]    [c.375]    [c.227]    [c.331]   
Смотреть главы в:

Основы биологической химии -> Главные фотосинтетические пигменты




ПОИСК





Смотрите так же термины и статьи:

Фотосинтетические пигменты



© 2025 chem21.info Реклама на сайте