Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа первичный квантовый выход

    Отношение числа поглощенных квантов к числу испускаемых путем флуоресценции является мерой тушения флуоресценции оно так и называется тушением. Если измерить зависимость тушения флуоресценции от концентрации поглощающего вещества А, то согласно (Х.Ю) графическое изображение этой зависимости должно выражаться прямой линией (рис. Х.З), угловой коэффициент—прямой iga = k2 k, а отрезок ординаты, отсекаемый прямой, а = Ц- з//г1. Таким образом, механизм Штерна — Фольмера ведет к линейной зависимости тушения от концентрации, позволяющей найти отношения констант к2 к и 1/йз, а, следовательно, и 2/ 3. Найденные отношения можно подставить в выражение (Х.9) и определить первичный квантовый выход. Фактически используемая процедура несколько сложнее описанной, так как в измеренную флуоресценцию надо было бы ввести поправки на поглощение по пути к измерительному инструменту. Мы на этом останавливаться не будем и ограничимся указанием, что наблюдение прямолинейной зависимости вида рис. Х.З считается доказательством меха- [c.261]


    Следовательно, описанный метод позволяет найти и первичный квантовый выход, и относительное значение констант скорости элементарных реакций 2 и 3. [c.249]

    Величина отношения полного квантового выхода к первичному (Ф/ф) аналогична понятию кинетической длины цепи v, используемому при исследованиях термических цепных реакций. Эта величина может быть выражена также через константы скоростей вторичных реакций, и в этом случае ее изменение в зависимости от концентрации различных частиц может служить подтверждением гипотетического механизма реакции и давать оценку констант скоростей. [c.20]

    Отсюда видно, что квантовый выход зависит от температуры, поскольку 3 — обычная константа скорости химической реакции, изменяющаяся с изменением температуры. Температура влияет также и на первичные процессы, поскольку поглощающая способность вещества (е) зависит от температуры, хотя это влияние проявляется не так сильно, как в случае вторичных процессов. Например, в реакциях хлорирования органических соединений первичным процессом всегда является фотораспад молекул хлора [c.451]

    При окисленном первичном хинонном акцепторе Qa (состояние 1), когда реакционный центр находится в так называемом открытом состоянии, константа kph является наибольшей из этих трех констант. Поэтому здесь энергия возбуждения используется в реакциях фотосинтеза с квантовым выходом дФ, близким к единице, и только небольшая часть возбуждений (около 0,3%) теряется в виде флуоресценции за время переноса возбуждения к реакционному центру. [c.354]

    Истинные изменения интенсивности флуоресценции могут вызываться двумя факторами изменениями относительных вероятностей флуоресценции и диссипации энергии в светопоглощающем комплексе и изменениями вероятности первичного фотохимического процесса. Как указывалось ранее (см. т. I, стр. 554, а также гл. ХХШ и XXIV данного тома), поглощенную световую энергию стремятся использовать три конкурирующих процесса диссипация энергии (константа скорости, квантовый выход 8), химическое превращение (константа скорости kf, квантовый выход y) и флуоресценция (константа скорости kf, квантовый выход <р). Если все три конкурирующих процесса подчиняются закону мономолекулярных реакций, то их квантовые выходы определяются уравнениями следующего типа  [c.500]

    Фотохимические процессы могут вызывать химические изменения веществ. Природа получаемых продуктов, а также скорости их образования могут быть определены обычными химическими методами, рассматривать их здесь нет необходимости. Больший интерес представляют экспериментальные методы, связанные с использованием световых измерений. Определения интенсивностей поглощаемого (а иногда испускаемого) света существенны для нахождения квантовых выходов, которые в свою очередь необходимы для оценки эффективности первичных фотохимических процессов. Квантовые выходы могут быть определены с помощью классических методов, т. е. при освещении постоянным светом. Кинетическое поведение реакционных систем в условиях постоянного освещения обычно согласуется с предположением о наличии стационарных концентраций промежуточных соединений реакций. Дополнительные кинетические данные (например, константы скорости отдельных стадий) можно получить в экспериментах, проводимых в нестационарных условиях. Это уже было продемонстрировано на примерах фотолиза (см. конец разд. 1.8) и флуоресценции (см. разд. 4.3). Фотохимические процессы идеально подходят для изучения в нестационарных условиях потому, что освещение можно включить и выключить очень быстро с помощью импульсной лампы или механического затвора. Часто нельзя аналогичным образом начать и остановить термические реакции (хотя ударные волны могут использоваться для быстрого нагревания в газовых системах). Эта глава начинается с обсуждения источников света, применяемых в фотохими- [c.178]


    З N — 6 (или 3 N — 5 в случае линейных молекул) колебательных К. ч. При описании мол. орбиталей в квантовой химии примен. также нецелые эффективные главные квантовые числа, имитирующие главное К. ч. п. Специальные наборы К. ч. использ. для задания спинов ядер, спина всей системы ядер молекулы и сумм спина ядер с др. моментами молекулы. К. ч. широко использ. при аиализе структуры спектра молекулярных и атомных систем с помощью К. ч., как правило, формулируются правила отбора. В. И. Пупышев. КВАНТОВЫЙ ВЫХОД, отношение числа молекул, участвующих в фотохим. илн фотофиз. процессе, к числу поглощенных фотонов. Для фотохим. р-ций К. в. рассчитывают в единицу времени (дифференциальный К. в.) или в нек-рый промежуток времени (интегральный К. в.). Исходя из значений К. в. определяют скорости фотохим. р-ций, константы скорости первичных фотопроцессов и др. К. в. неценных фотохим. р-ций изменяегся от очень малых значений до 1 для цепных процессов он м. б. значительно больше 1, наир- для р-ции хлора с водородом — 10 — 10 . От К. в. следует отличать квантовую эффективность, к-рая равна отношению скорости процесса к скорости образования того возбужденного состояния, из к-рого протекает данный процесс. К. в. равен квантовой эффективности только для процессов, происходящих иэ синглетного возбужденного состояния. [c.252]

    Квантовый выход Ф первичного продукта Ф. р., образующегося из к.-л. возбужденного состояния, равен отношению скорости этой Ф.р. к сумме скоростей всех фотофиз, и фотохим. процессов гибели этого возбужденного состояния. Поскольку такие процессы м. 6. как мономолекулярными, так и бимолжулярными, сумму их скоростей выражают через сумму констант скорости щ мономолекулярных (для р-ций первого порядка) и псеЕДОмономолекулярных (для р-ций второго порядка) процессов, при условии, что для бимолекулярных р-ций концентрация [X] реагента в осн. электронном состоянии гораздо больше концентрации возбужденных молекул. Если <р - квантовый выход молекул в возбужденном состоянии (как правило, ф = 1 для возбужденных синглетных состояний и ф< 1 для триплетных состояний), к, - константа скорости рассматриваемой Ф. р., то [c.179]

    КВАНТОВЫЙ ВЫХОД, отношение числа молекул, участвующих в фотохим. или фотофиз. процессе, к числу поглощенных фотонов. Для фотохим. р-ций К. в. рассчитывают в единицу времени (дифференциальный К. в.) или в нек-рый промежуток времени (интегральный К. в.). Исходя из значений К. в. определяют скорости фотохим. р-ций, константы скорости первичных фотопроцессов и др. К. в. неценных фотохим. р-ций изменяется от очень малых значений до 1 для цепных процессов он м. б. значительно больше 1, напр, для р-ции хлора с водородом — 10 — 10 . От К. в. следует отличать квантовую эффективность, к-рая равна отношению скорости процесса к скорости образования того возбужденного состояния, из к-рого протекает даш1ый процесс. К. в. равен квантовой эффективности только для процессов, происходящих из синглетного возбужденного состояния. [c.252]

    Основные научные работы посвящены исследованию сверхбыстрых химических реакций импульсными методами. Совместно с Р. Дж. Р. Норришем соацал (1950) первую установку импульсного фотолиза. Ими впервые были получены спектры поглощения многих простых свободных радикалов, изучен механизм их превращений, показано существование быстрых рекомбинационных процессов. Им удалось зарегистрировать спектральную картину развития реакции хлора с кислородом, инициируемую световым импульсом. Исследовал быстрые реакции в кондеч-сированной фазе. Предложил метод определения абсолютного квантового выхода триплетных состояний. Разработанные им приемы изучения деградации энергии триплетных молекул позволили представить детальную картину быстрых процессов, следующих за фотовозбуждением. Установил основные кинетические закономерности реакций переноса электрона и атома водорода. Определил константы кислотно-основного равновесия для синглетных и триплег-ных состояний ароматических молекул нашел связь между константами скорости реакций и природой возбужденного состояния. Исследовал механизм первичных фотохимических реакций на модельных системах фотосинтеза. Одним из первых создал установки импульсного лазерного фотолиза. [c.404]

    В табл. 4.18 приведены значения квантовых выходов у. Вид уравнения (4.86) указывает на простую конкуренцию между реакцией мономолекулярной дезактивации возбужденных ионов иО + (или, скорее, комплексов иО + А ) и окислительно-восстановительной реакцией. Отношение констант скоростей двух этих реакций равно 0,2. Абсолютные квантовые выходы (до - 5), по-вндимому, указывают на цепную реакцию (допускается, что происходит полное комплексообразование, что неверно для низких значений А, и что реакция требует столкновения возбужденного комплекса со второй молекулой кислоты). Влияние длины волны (уменьшение выхода с увеличением длины волны) сводится к клеточному эффекту (бб.аьшей вероятности прохождения первичной обратной реакции внутри клетки , если избыточная энергия фотохимических продуктов выше). По-видимому, те же общие особенности характерны для подобных реакций окисления лимонной кислоты, миндальной кислоты и этилового спирта, указанных в других разделах этой книги. [c.300]


    Квантовый выход первичных процессов фотосинтеза достаточно высок. Поэтому указанное сокращение длительности и выхода флуоресценции пигментов в живых системах должно быть главным образом обусловлено не тепловыми потерями, а процессом фотохимической дезактивации синглетного возбуждения состояния S в реакционных центрах фотосинтеза. Независимо от механизма этого процесса РЦ следует рассматривать как естественные фотохимические тушители флуоресценции молекул пигментов светособирающей матрицы. Можно оценить эффективность этого тушения, считая, что в фотосинтетической мембране значения констант р, д, г (см. 1 гл. xxvn) сохраняются неизменными, а процесс тушения флуоресценции при захвате энергии реакционными центрами эквивалентен фотохимической дезактивации кф состояния S молекул антенны. Тогда, подставляя величины т. Б, xi, Bi в формулы (XXVn.l.l)-(XXVn.l.9), найдем, что эффективность использования возбуждения реакционными центрами составляет Ф 0,93 -j- 0,95 (Борисов А. Ю.). [c.296]

    С несколько иной целью метод направленного мутагенеза был применен при исследовании структуры первичного донора в бактериальном фотосинтетическом реакционном центре. Известно, что аксиальными лигандами атомов Mg в димере бактериохлорофилла служат остатки Гис 173 и Гис 200. Нри замене Гис 200 на Phe или Leu происходит выпадение Mg и феофитинизация одной из молекул бактериохлорофилла в димере. Такая модификация реакционного центра и образование гетеродимера не ингибирует фотохимической активности, но изменяет кинетические и спектральные характеристики процессов переноса электрона. Так, величина квантового выхода первичного разделения зарядов у мутанта уменьшена в 2 раза по сравнению с контролем, а константа скорости этой реакции упала до f = 1/30 пс по сравнению с f = 1/4 пс у интактных центров. [c.338]

    Мембранная организация имеет огромное значение для протекания фотохимических и электронных стадий фотосинтеза, с одной стороны, и регуляции фотосинтетической активности,— с другой. Прежде всего мембраны обеспечивают пространственную близость и стереометри-чески-функциональное соответствие между пигментами и переносчиками электронов, необходимые для эффективной работы фотосиптетического аппарата. Таким путем достигается практически 100-процентный квантовый выход первичной фотохимической реакции, причем константа ее скорости должна значительно превосходить кон- [c.98]

    К адиабатическим реакциям приложимы обычные подходы при рассмотрении реакционной способности, основанные, большей частью, на теории переходного состояния, причем квантовый выход первичной реакции определяется соотношением констант скорости (энергии активации) данной реакции и суммой констант скорости процессов излучательной и безызлуча-тельной дезактивации. Для диабетических реакций ключевым является переход между потенциальными поверхностями различных электронных состояний. При этом квантовый выход реакции зависит от соотношения вероятностей попадания на потенциальную поверхность основного состояния в области продуктов или реагентов. Эти вероятности в свою очередь определяются формой потенциальной поверхности возбужденного и основного состояний и скоростью движения систем по потенциальной поверхности. Для реакций из горячего основного электронного состояния определяющим является соотношение скоростей термализации и преодоления потенциального барьера реакции. Чем ближе конфигурация ядер молекулы, в которой происходит инверсия в основное состояние, к переходному состоянию реакции, тем больше вероятность образования продуктов. [c.87]


Смотреть страницы где упоминается термин Константа первичный квантовый выход: [c.53]    [c.263]    [c.218]   
Свободные радикалы (1970) -- [ c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Квантовый выход



© 2025 chem21.info Реклама на сайте