Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пигмент как реакционный центр ФСП

Рис. 71. Теоретические кривые изменений концентрации фотохимически активного пигмента реакционного центра в зависимости от номера вспышки света, построенные исходя из выражения (13.44) при различных значе- Рис. 71. Теоретические <a href="/info/980495">кривые изменений концентрации</a> <a href="/info/890347">фотохимически активного пигмента</a> <a href="/info/29457">реакционного центра</a> в зависимости от номера <a href="/info/1321419">вспышки света</a>, <a href="/info/1495152">построенные исходя</a> из выражения (13.44) при различных значе-

Рис. 72. Теоретическая зависимость величины индуцированного вспышкой света окисления пигмента реакционного центра от номера вспышки, рассчитанная исходя из формулы (13.46) Рис. 72. <a href="/info/14408">Теоретическая зависимость</a> величины индуцированного <a href="/info/1321419">вспышкой света</a> окисления пигмента реакционного центра от номера вспышки, рассчитанная исходя из формулы (13.46)
    Ключевыми стадиями первичных процессов фотосинтеза является эффективная миграция энергии в светособирающих комплексах, захват возбуждения фотоактивными пигментами реакционных центров, разделение зарядов и их первичная стабилизация в форме ион-радикалов. В [35] показано, что в число факторов, контролирующих эффективность начального разделения зарядов в структуре фотосинтетических реакционных центров, входят и циклические релаксационные процессы, включающие первичную поляризацию молекулярного окружения в макроструктуре ассоциатов донора и акцептора. Данные релаксационные процессы, индуцирующие определенную реорганизацию взаимодействующей среды, происходят уже в самой начальной стадии разделения зарядов, эффективно ускоряя скорость перестройки среды. [c.157]

    Часть вспомогат. пигментов, спектрально наиб, близких к фотохимически активному хлорофиллу, непосредственно окружает каждый из реакционных центров, образуя т. наз. антенны. [c.176]

    Совершенно очевидно, что один из наиболее перспективных методов крупномасштабного преобразования солнечной энергии основан на использовании биосистем. Широкое применение биосистем для получения энергии способно обеспечить свыше 15 % производства энергии для экономически развитых стран. В последние 10—15 лет намечены новые пути биотрансформации солнечной энергии при фотосинтезе. Установлено, что некоторые микробиологические системы характеризуются высокой эффективностью фотосинтеза. Так, фоторазложение воды, осуществляемое суспензией хлореллы с образованием кислорода, в оптимальных условиях культивирования дает 130—140 л газа с 1 м освещаемой поверхности в сутки. Известно, что одна из особенностей процесса фотосинтеза — уменьшение эффективности преобразования солнечной энергии при высоких значениях интенсивности света. Новые технологии позволяют повысить эффективность фотосинтеза при высокой интенсивности света. Разрабатываются системы, эффективно поглощающие световой поток и обогащенные реакционными центрами по отношению к пигменту. Световые кривые фотосинтеза улучшаются также с увеличением скорости лимитирующей стадии электронного транспорта. Например, проведение процесса при повышенных температурах в системах термофильных микроорганизмов увеличивает эффективность преобразования солнечной энергии при высокой интенсивности света. [c.26]


    Из обработанных детергентами хлоропластов можно выделить три светособирающие пигментные системы в форме комплексов хлорофилл — белок. Так, ФС I можно разделить на комплекс хлорофилл а — белок, который содержит около 120 молекул хлорофилла а (10.4), входящих в состав антенны, и реакционный центр Р-700 (см. ниже, разд. 10.4.3). В состав ФС II входит комплекс хлорофилл а — белок, содержащий реакционный центр Р-680 и около 60 молекул хлорофилла а. Ни в ФС I, ни в ФС II хлорофилл Ь (10.5) не содержится. В обе фотосистемы включено некоторое количество р-каротина (10.6), хотя не известно, является ли он частью пигментов антенны или входит в состав реакционных центров. [c.335]

    Группы фотосинтезирующих эубактерий Светособирающие пигменты Хлорофиллы, входящие в состав реакционного центра [c.273]

    В то время как основная масса фотосинтетических пигментов способна только поглощать энергию света и передавать ее соседним молекулам, небольшая часть молекул хлорофилла участвует в осуществлении фотохимической реакции, т.е. преобразовании электромагнитной энергии в химическую. Процесс этот происходит в реакционных центрах, состоящих из первичного донора электронов, первичного акцептора и одного или более вторичных акцепторов электронов. Кроме того, в составе реакционных центров обнаружены молекулы каротиноидов и полипептидов. Основные компоненты реакционных центров разных групп фотосинтезирующих эубактерий представлены в табл. 23. [c.279]

    Фотосистема. Система фотосинтезирующих клеток, включающая функциональную группу поглощающих свет пигментов и реакционный центр. [c.1021]

    Реакционный центр I. Пигмент реакционного центра фотосистемы I характеризуется изменениями поглощения света, главным образом при 700 нм, которые выявляются в спектре иосле освещения хлоропластов вспыщками света. Он известен как хлорофилл аг, или пмгмент Р-700, и представляет собой [c.339]

    Реакционный центр П. Пигмент реакционного центра П представляет собой также комплекс хлорофилла с белком, содержащий димер хлорофилла а, известный как хлорофилл ац, или Р-680. Хотя иной характер поглощения света этим пигментом указывает на то, что молекулы хлорофилла а находятся здесь в другом молекулярном окружении или по-иному ориентированы, чем в случае пигмента Р-700, процессы поглощения света и окисления, происходящие в реакционном центре П, сходны с аналогичными процессами в реакционном центре I. Здесь также энергия электронного возбуждения передается с хлорофилла антенны на хлорофилл ац, который подвергается возбуждению с последующим окислением до катион-па хикала и делокализацией неспаренного электрона. В этом случае электрон передается на первичный акцептор электрона фотосистемы И р (Х-320). Затем катион-радикал хлорофилла йц восстанавливается, получая электрон от донора Z. Таким образом, фотосистема П эффективно переносит электроны от 2 на Р (рис. 10.10). [c.341]

    Свет с Я < 700 нм вызывает обратимые изменения поглощения СЫ a . За окислением следует восстановление в течение 20 мс. В области 700—730 нм окисление hl а, необратимо. Пигмент реакционного центра ФСП возбуждается лишь при Я < <700 нм. Это, по-видимому, также СЫа (СЫдц). Различив [c.454]

    Локализация пигментов. Фотосинтетические пигменты у пурпурных бактерий связаны с внутренними мембранами-везикулярными или трубчатыми выростами плазматической мембраны, которые сохраняют с ней связь, но проникают в толщу цитоплазмы. У разных видов бактерий такие мембраны имеют разную форму. Это могут быть трубочки, везикулы (пузырьки) или скопления ламелл (располагающихся концентрически или же в виде стопок) иногда они заполняют всю внутренность клетки (см. рис. 2.23). Фрагменты мембран, освобождаемые при разрушении клеток в виде везикул и отделяемые центрифугированием, называют хроматофорами . В клетках зеленых бактерий пигменты связаны с различными структурами светособирающие пигменты-главным образом с хлоросомами, а пигменты реакционных центров-с плазматической мембраной (см, рис. 2.4 и 12.9). [c.378]

    Можно считать, что электронный транспорт начинается с поглощения квантов света фотосистемой 2, в результате чего образуются восстановленная форма первичного акцептора электронов Q и окисленный пигмент реакционного центра Pgjo, который обладает высоким окислительным потенциалом, достаточным для окисления ионов гидроксила (по-видимому, с помощью посредника X). От Q, химическая природа которого не расшифрована, электроны переходят на пластохинон, а от него — на цитохром 63(8559). Перечисленные участники электронного транспорта относятся к фотосистеме 2. [c.166]

    Константа kph отражает скорость захвата возбуждения реакционным центром ФС II в реакции первичного разделения зарядов и переноса электрона от возбужденной молекулы пигмента реакционного центра на молекулу феофетина. Затем следует серия вторичных процессов переноса электрона, обеспечивающих стабилизацию разделенных зарядов ( 7)  [c.354]


    Здесь С — цитохром Р — фотохимически активный пигмент реакционного центра (димер бактериохлорофилла а, Р870) Ql, Qll— соответственно, первичный и вторичный хиноны к, кз— псевдомономолекулярные константы скорости, пропорциональные концентрации экзогенного донора и акцептора соответственно кз — константа скорости, пропорциональная интенсивности действующего света к.2, кг, к.4, к — соответствующие константы скорости переноса электронов между цитохромом и пигментом, а также между Ql и 0ц. Предполагается, что все указанные переносчики входят в единый комплекс. Для простоты рассмотрим только окислительно-восстановительные реакции переносчиков. Перенос электронов в реакционном центре, происходящий согласно схеме (8.17), может быть описан исходя из графа состояний комплекса, представленного на рис. 39 (см. также гл. 3). 0(1) на рисунке означает, что соответствующий переносчик электронов окислен (восстановлен). Согласно данным, представленным в гл. 1, для констант скорости справедливы следующие соотношения [c.183]

    Исследования показали, что в первой фотосистеме ста молекулам светособнрающего хлорофилла соответствует одна молекула хлорофилла реакционного центра. Реакционные центры, выделенные из хроматофоров фотосинтезирующих бактерий, включают белок (3 субъединицы), бактериохлорофилл (4 молекулы), бактериофеофитнн (2 молекулы), первичные акцепторы уби- и пластохииоп (1—2 молекулы) и цитохромы— доноры э [ектрона. Пигменты в реакционных центрах на.ходятся преимущественно в агрегированных формах. Установлено, что пигменты реакционных центров глубже погружены внутрь мембраны по сравнению с более поверхностным расположением светособирающих молекул хлорофилла, У фотосинтезирующих бактерий в реакционных центрах донорами электронов являются бактериохлорофилл 960 нм и 890 им и акцепторами — убихинон и Ре. [c.189]

    Как видно из рис. 8.9, максимум длинноволнового спектра поглощения хлорофилла в хлоропластах сдвинут в красную область по сравнению с максимумом хлорофилла в растворе. Этот эффект частично может быть объяснен комплексообразо-ванием молекул хлорофилла с белками. При более детальном изучении спектров поглощения хлоропластов удается различить по крайней мере две спектральные формы хлорофилла, которые, возможно, обусловлены комплексообразованием хлорофилла а с различными белками или мономерами и димерами хлорофилла. Эти две спектральные формы хлорофилла приписывают пигментным системам I и II, или фотосистемам I и II (ФС I и ФСП), фотохимические реакционные центры которых имеют характерные полосы поглощения с максимумами при700 и 680 нм соответственно (обозначаются как Р оо и Резо). Возможно, более коротковолновый спектр поглощения ФС II по сравнению со спектром ФС I связан с наличием вспомогательных пигментов (например, хлорофилла Ь у зеленых растений). Однако флуоресцентные исследования показывают, что энергия [c.233]

    Во всех фотосинтезирующих растениях обнаружен хлорофилл а, содержание которого превьщ1ает содержание других пигментов. Он является самым важным пигментом, так как образует реакционные центры, участвующие в световой фазе фотосинтеза. Другие формы хлорофиллов, а также каротиноиды рассматриваются как вспомогательные, или сопутствующие, пигменты. Функция каротиноидов не ограничивается ролью светособирающих пигментов. Оки также защищают ткани от окисления кислородом на свету. [c.531]

    Особенно велика роль экранированных (закрытых) РЦ в химии сложных молекул — макроциклов, комплексных соединений, белков, нуклеиновых кислот, ферментов, в которых имеется много неэквивалентных реакционных центров, которые в различной степени экранированы близколежащими цепями полимеров, а иногда полностью закрыты для большинства реагентов и доступны лишь для немногих таких, как О2, СО, H N, Н2О. Такой случай наблюдается в биологической системе гемоглобина, в котором гем — дыхательный пигмент находится в глубокой полости белка ( кармане ) и реакционный центр (электроноакцепторный РЦ) в виде закомплексованного Fe сильно экранирован. Многие болезни крови обусловлены изменением структуры белка (глобина) и частичным раскрытием реакционного центра (Fe " ). [c.191]

    Система тилакоидных мембран хлоропласта превраш,а-ет энергию света в форму, которая может быть использована для осушествления химических реакций. Целиком процесс фотосинтеза был схематически представлен на рис. 10.1. В приводимом ниже обсуждении фотосинтеза рассматриваются три стадии. Первая стадия представляет собой световую реакцию — первичный процесс, с помош,ью которого энергия света поглощается светособирающими пигментами и переносится на фотохимические реакционные центры. На второй стадии поглощенная энергия света используется для осуществления транспорта электронов от воды до NADP+. В ходе электронного транспорта устанавливается градиент заряда, или концентрации протонов, через функциональные везикулы мембраны. Третья стадия представляет собой путь, по которому NADPH, образованный электронтранспортной системой, и АТР, генерируемый за счет различий электрохимического потенциала протонного градиента, используются для фиксации СО2 и синтеза углеводов. Хотя в целях упрощения процесс фотосинтеза разбит на три стадии, необходимо помнить, что поглощение света, транспорт электронов и генерация электрохимического градиента в действительности очень тесно сопряжены. [c.333]

    Антенна и пигменты ССК участвуют в поглощении света, в результате чего происходит возбуждение электронов, и передают энергию возбуждения от молекулы к молекуле, пока она не достигнет реакционного центра. В реакционном центре эта энергия возбуждения превращается в химически утилизируемую форму. Активным пигментом в реакционных цеытра.х обеих фотосистем служит специфический димер хлороф11лла а, который подвергается обратимому окислению. [c.339]

    Вместе с тем механизм улавливания света у бактерий очень сходен с соответствующим механизмом у растений, хотя фотосинтетические единицы у первых меньше. Так же как в хлоропластах, свет поглощается пигментами антенны, энергия воз- буждения быстро передается на реакционный центр и используется в качестве движущей силы в транспорте электронов. Главным фотоактивным пигментом является бактериохлорофилл (БХл), в большинстве случаев бактериохлорофилл а (10.15), а в некоторых случаях (например, у Якойорзеийото- [c.356]

    Формирование активных фотосистем. Рост тилакоидной мембраны и развитие функционирующего фотосинтетического аппарата в ходе дифференциации этиопласта в хлоропласт — многоступенчатый процесс, который включает не только биосинтез структурных и функциональных компонентов, но также и интеграцию и сборку этих компонентов в функциональные единицы. На разных стадиях развития мембран можно выделить тилакоиды, содержащие ФС I- и ФС П-единицы. Сначала формируются ядра ФС I и ФС II, включающие реакционные центры, а затем простые (мономерные ) формы ССК. Дифференциация первичных тилакоидов в тилакоиды стромы и гран происходит по мере синтеза ССК в ходе такой дифференциации размер ФС I- и ФС П-единиц увеличивается, а в процессе дальнейшего развития пигмент-белковые комплексы постепенно организуются в большие надмолекулярные структуры полностью развитых хлоропластов. [c.359]

    Главным фактором, регулирующим развитие фотосинтетических мембран и синтез пигментов, по-видимому, является парциальное давление кислорода. Если оно выше определенного уровня, дыхание может происходить с достаточной эффективностью, но образования фотосинтетических мембран или синтеза пигментов при этом не наблюдается. Низкое парциальное давление кислорода стимулирует образование фотосинтетического аппарата и пигментов, в первую очередь реакционных центров и главного комплекса светособирающей антенны Р-875. В ответ на изменение интенсивности освещения изменяется и состав пигментов. Так, у Rhodopseudomonas spp., свет низкой интенсивности стимулирует синтез бактериохлорофилла и каротиноидов, поскольку происходит формирование вторичного комплекса светособирающей антенны Р-800-850. Свет высокой интенсивности подавляет формирование этого комплекса, и в результате содержание пигментов снижается. В случае Rhodospirillum rubrum, которая не содержит антенны Р-800-850, содержание пигмента главной светособирающей антенны Р-875 регулируется интенсивностью освещения. О том, как протекают и регулируются процессы, в ходе которых фотосинтетические пигменты образуются и включаются в мембраны, известно немного. Гены, контролирующие синтез хлорофилла и каротиноидов, а также, возможно, развитие активного фотосинтетического аппарата в целом, локализованы в хромосоме (но не в плазмиде) и расположены очень близко друг к другу. В кодировании фотосинтетического аппарата может участвовать одна большая генетическая единица. [c.364]

    Два компоненту фотосинтетического аппарата — реакционные центры и электронтранспортные системы — всегда локализованы в клеточных мембранах, представленных ЦПМ и у большинства фотосинтезирующих эубактерий развитой системой внутрицитоплазматических мембран — производных ЦПМ (см. рис. 4). Локализация светособирающих пигментов в разных группах фотосинтезирующих эубактерий различна (табл. 22). У пурпурных бактерий, гелиобактерий и прохлорофит светособирающие пигменты в виде комплексов с белками интегрированы в мембраны (рис. 72, А). В клетках зеленых бактерий и цианобактерий основная масса све-тособирающих пигментов находится в особых структурах, прикрепленных к поверхности мембраны, но не являющихся ее компонентом. Это хлоросомы зеленых бактерий и фикобилисомы цианобактерий (см. рис. 4). [c.274]

    В хлоросомах зеленых бактерий содержится весь бактериохлорофилл с, с1 или е (в зависимости от вида), а также небольшие количества бактериохлорофилла а, служащего промежуточным звеном при переносе энергии света от основного светособирающего бактериохлорофилла к бактериохлорофиллу а, локализованному в ЦПМ. С этой формы пигмента энергия света передается на модифицированную форму бактериохлорофилла а реакционного центра. Локализованные в хлоросомах светособирающие бактериохлорофиллы организованы в виде палочковидных структур диаметром 5 — 10 нм, расположенных параллельно длинной оси [c.274]

    Перечисленные выше пути перехода молекулы хлорофилла из возбужденного состояния в основное не исчерпывают всех возможностей. В клетке молекулы хлорофилла в норме достаточно жестко сопряжены друг с другом, поэтому перешедшая в возбужденное состояние молекула пигмента может передавать энергию поглощенного кванта света соседней молекуле, переводя ее в возбужденное состояние. Основная масса хлорофилла и других фотосинтетических пигментов клетки представляет собой антенну, улавливающую световую энергию. Светособираюшие пигменты организованы в виде комплексов, в которых они связаны с молекулами белка. Энергия возбуждения мигрирует в направлении от пигментов, поглощающих свет более коротких длин волн, к более длинноволновым формам и от последних поступает в реакционные центры. Для передачи энергии электронного возбуждения необходимо, чтобы среднее расстояние между молекулами пигментов составляло около 10А. [c.278]

    Функционирование фотохимического пути образования восстановителя у зеленых серобактерий и гелиобактерий ставит их перед проблемой заполнения возникающих электронных вакансий в молекулах бактериохлорофилла реакционного центра. Это достигается путем переноса электронов по электрохимическому градиенту от экзогенного донора к молекулам пигмента. В переносе участвуют растворимые и связанные с мембраной цитохромы типа Ьу1с (см. рис. 75, Б). Таким образом, на определенном этапе эволюции эубактерий сформировался способ получения энергии, в основе которого лежит использование энергии света, и для функционирования этого пути необходимы определенные экзогенные вещества. [c.286]

    Однако окислительно-восстановительный потенциал системы вода — молекулярный кислород равен +820 мВ, из чего следует, что электронная вакансия , возникающая, например, в молекуле бактериохлорофилла реакционного центра зеленых серобактерий при нециклическом транспорте электронов, не может быть заполнена электроном воды (фотоокисленная форма бактериохлорофилла реакционного центра зеленых серобактерий — пигмента П84о — имеет окислительно-восстановительный потенциал порядка +250 мВ). Чтобы использование электронов воды стало возможным, необходимо, во-первых, их оторвать от молекулы Н2О, термодинамически очень невыгодного донора электронов, и, во-вторых, поднять на более высокий энергетический уровень, позволяющий включаться в фотосистему, описанную выше. Природа решила эти проблемы путем создания дополнительной пигментной системы, обозначаемой как фотосистема П. [c.287]

    Известны две группы эубактерий, у которых фотосистема И уже сформировалась, и процесс фотосинтеза функционирует на качественно ином уровне. Это цианобактерии и прохлорофиты. Формирование фотосистемы И у них связано с появлением новых фоторецепторов и образованием новых типов фотохимических реакционных центров. Возник новый вид хлорофилла — хлорофилл а, функционирующий как светособирающий пигмент и в модифицированных формах входящий в состав реакционных центров фотосистемы П — Пб8о, фотосистемы I — П700. Возникли и новые пигменты антенны фикобилипротеины и хлорофилл Ь. [c.287]

    Общая схема фотосинтеза цианобактерий представляет собой определенную серию реакций, включающую две последовательно действующие фотореакции (рис. 75, В). Свет, поглощаемый фоторецепторами фотосистемы II — фикобилипротеинами, хлорофиллом а, каротиноидами, — передается на хлорофилл реакционного центра. Поглощение кванта света этим пигментом приводит к отрыву от него электрона и акцептированию молекулой особой формы пластохинона. Окисленная молекула Пб о восстанавливается за счет электронов воды, подвергающейся фотоокислению в реакционных центрах фотосистемы II  [c.288]

    Электрон от акцептора фотосистемы II проходит через цепь переносчиков и поступает в реакционный центр фотосистемы I, на фотоокисленную форму хлорофилла а — пигмент Пуоо ( о=+500 мВ), заполняя электронную вакансию аналогично тому, как это происходит при фотосинтезе зеленых серобактерий. Перенос электронов от акцептора электронов фотосистемы II до реакционного центра фотосистемы I — темновой процесс, состоящий из серии этапов, в которых участвуют переносчики с понижающимися восстановительными потенциалами, такие как цитохромы разного типа, пластоцианин (медьсодержащий белок), пластохинон. Электронный транспорт на этом участке на определенных этапах сопровождается ориентированным поперек мембраны переносом протонов и, следовательно, генерированием Дрн+> разрядка которого с помощью протонной АТФ-синтазы приводит к синтезу АТФ. [c.288]

    Дигидроксииндолин-2-карбоновая кислота 6.365, подвергаясь действию оксидаз, дает набор более глубоко окисленных веществ (некоторые из них приведены в нижней части схемы). Здесь же под номером 6.368 изображена молекула адренохрома, образующаяся при аналогичном окислении адреналина 6.7 (см. разд. 6.2). Бетаин 6.368, а также ортохиноны 6.366 и 6.367 содержат химически активные сопряженные двойные связи и нуклеофильные группы. За счет этих реакционных центров у животных они подвергаются полимеризации, образуя окрашенные высокомолекулярные вещества, называемые меланинами. Это происходит в специализированных клетках — меланоцитах. Цвет пигмента зависит от структурных особенностей и степени полимеризации и охватывает диапазон от желтого и красного до совершенно черного. Меланины обусловливают окраску кожи, глаз и волос человека, В коже они выполняют функцию защиты от ультрафиолетового облучения служат ловушкой свободных радикалов, рождающихся при действии высокочастотной составляющей солнечного света. Волосяные и перьевые покровы млекопитающих и птиц также окрашены меланинами. Меланиновую природу имеет и пигмент чернильной жидкости каракатицы, которую она извергает, чтобы скрыться от опасности. [c.514]

    Набор светособирающих, или антенных, пигментов с его реакционным центром, поставляющим высокоэнергетические электроны для восстановления NADP, образует фотосистему I, максимально возбуждаемую светом с длиной волны 700 нм. Найдено, однако, что максимальная скорость выделения кислорода достигается лишь в том случае, если хлоропласты поглощают не только свет с длиной волны 700 нм, но и более корот- [c.694]

    В функционирующих хлоропластах каждая электрон-транс-портная цепь может осуществлять акт передачи каждые 15 мс. На ярком свету молекула хлорофилла в среднем поглощает фотон один раз в 100 мс, а в условиях слабого или рассеянного освещения даже ре ке. Однако, поскольку каждый реакционный центр связан с несколькими сотнями светособирающих шлекул пигмента, интенсивность переноса электронов увеличивается. Время с момента поглощения света до попадания возбуждения в ловушку измеряется пикосекундами. Однако перенос электрона осуществляется медленно, и лимитирующая реакция синтеза АТР протекает за время порядка 20 мс. [c.45]


Смотреть страницы где упоминается термин Пигмент как реакционный центр ФСП: [c.196]    [c.283]    [c.279]    [c.255]    [c.232]    [c.43]    [c.176]    [c.334]    [c.337]    [c.62]    [c.273]    [c.213]    [c.31]    [c.714]   
Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.57 ]




ПОИСК







© 2024 chem21.info Реклама на сайте