Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Структурная окраска

    X р о м н ы X, которые в присутствии хромофорных также влияют на окраску. Присоединение или отщепление протона по этой теории вызывает перестройку молекулы индикатора, в результате которой появляются -новые или исчезают существовавшие ранее хромофорные группы и таким образом происходит изменение цвета индикатора. Более общее квантово-механическое толкование изменения окраски индикатора основано на рассмотрении изменений в распределении электронной плотности в процессах взаимодействия протона с индикатором. Структурные изменения в растворах метилового оранжевого при изменении pH можно представить схемой [c.58]


    Окраска внешних покровов помогает животным укрываться или маскироваться (покровительственная окраска), а также служит для опознавания или предупреждения (предупреждающая окраска). При этом используется как структурная окраска, так и окраска, обусловленная пигментами (любого класса). [c.281]

    Если альдегид со свободной фенольной группой давал красную окраску в кислом растворе и синюю в щелочном, то эфиры кониферилового альдегида давали красную окраску и в кислом и в щелочном растворах. Поскольку природный лигнин также давал в обоих растворах красную окраску, то представлялось очевидным, что фенольная гидроксильная группа в образующем окраску структурном звене природного лигнина не может быть свободной. Кроме того, поскольку древесина дает только красную окраску после мягкого щелочного или кислотного гидролиза, то-фенольная гидроксильная группа не может присутствовать и в виде сложного эфира. [c.57]

    В пользу структурного происхождения синевы Тиндаля свидетельствует тот факт, что до СИХ пор из тканей не удалось выделить ни одного синего пигмента, а также то, что синяя окраска не выявляется при просматривании тканей в проходящем белом свете. Ткани выглядят матовыми без радужной окраски, [c.13]

    Структурный голубей цвет воспринимается как голубой лишь в отраженном, но не в проходяш,ем свете. Окраска может зависеть также от угла падения света и от угла наблюдения. При погружении животного в воду или в другой растворитель окраска структурного происхождения, вероятно, исчезнет, а после испарения растворителя восстановится. Если окраска обусловлена пигментом, то последний можно экстрагировать из тканей водой или органическими растворителями. Информацию о хромофоре может дать резонансная рамановская спектроскопия. Изучение растворимости, физико-химических и спектроскопических свойств выделенного пигмента (см. соответствующие главы данной книги) позволит идентифицировать класс, к которому принадлежит это соединение. [c.404]

    Значительные градиенты концентрации структурной примеси железа отмечаются и в нетрещиноватых кристаллах аметиста различного происхождения. Синтетические аметисты характеризуются неоднородным зональным распределением структурного железа. В пределах слоя концентрация этой примеси также скачкообразно может изменяться благодаря интенсивному развитию дофинейских двойников. Природные кристаллы кварца, особенно аметисты, постоянно проявляют секториальное распределение примесей, в частности, центров аметистовой окраски, которые сосредоточены главным образом в пирамидах роста / . На границах секторов и <г> из-за значительных различий в содержании структурного железа должны возникать напряжения. Подавляющая масса товарных г-кристаллов аметиста выращивается на затравках, полученных при распиловке кристаллов пьезокварца, образованных, как известно, материалом пирамиды пинакоида, свободным от структурного алюминия и железа. [c.186]


    Химические вещества и явления обладают также количественной определенностью. Количество определяет химические вещества (явления) со стороны их величины (например, числа атомов, входящих в состав молекулы , объема, степени или уровня развития (структурная сложность), интенсивности изменения или проявления свойств (окраски, запаха, кислотности, степени диссоциации и т. д.). Под количеством понимают объективную определенность качественно однородных явлений, или качество в его пространственно-временном аспекте Действительно, поскольку все явления природы и общества существуют в пространстве и изменяются во времени, постольку их можно рассматривать как качественно тождественные и различать лишь в количественном плане. Количество является как бы внутренней градацией качества. [c.179]

    Распространение в природе. Пурины аденин (6.4) и гуанин (6.5) встречаются у всех организмов, будучи компонентами нуклеиновых кислот и нуклеотидов. Гуанин является также одним из пуринов, участвующих в формировании и распределении окраски у животных, мочевая кислота (6.6) также чрезвычайно широко распространена, тогда как ксантин (6.7) и изогуанин (6.8) встречаются реже. Эти пурины не поглощают видимый свет, но для них характерно сильное поглощение в УФ-свете, и поэтому некоторые животные, главным образом насекомые, могут их видеть. Пурины вносят важный вклад в окрашивание животных благодаря своему участию в формировании структурной окраски, особенно белого и сереб- [c.225]

    Оптическое поглощение в кварце в области 3200—3700 см связано с различным водородсодержащим дефектом. Изучение синтетических и природных кристаллов различного генезиса, подвергшихся различным внешним воздействиям (радиация, электролиз на воздухе и в вакууме, термохимическая обработка), показало, что возникновение таких дефектов обусловлено вхождением структурной примеси алюминия вместо кремния и необходимостью зарядовой компенсации . Поскольку такая компенсация осуществляется как щелочными ионами, так и протонами, то можно утверждать, что одной из основных характеристик всех кристаллов кварца являются концентрация структурной примеси алюминия и относительные концентрации различных ионов-компенсаторов. Следует также отметить, что в кварцах с радиационной цитриновой окраской осуществляется компенсация АЬцентров сложными дефектами, в состав которых входят как щелочной ион, так и протон. [c.76]

    Следует подчеркнуть, что в случае кристаллизации в растворах с добавками окислителей не все ионы железа переходят в трехвалентное состояние, поскольку одновременно с желтой цитриновой окраской в пирамиде <с> в пирамидах < + л > образуется зеленая окраска. Общее увеличение содержания ионов Ре + в растворе способствует также повышению концентрации структурной примеси железа в пирамидах роста основных ромбоэдров, что создает благоприятные условия для образования потенциальных центров аметистовой окраски. Таким образом, при одних и тех же термобарических параметрах в результате селективной адсорбции кристаллографическими плоскостями растущего кварца разновалентных ионов железа и различий в способе внедрения этих ионов в решетку в синхронных слоях кристалла могут формироваться центры зеленой цитриновой (<с> и <+. >) и радиационной аметистовой (<г> и <Я>) окрасок. [c.178]

    Клеточная оболочка — это мембрана, которая регулирует связь цитоплазмы с другими клетками и 1С внещней средой. Мембрана избирательно проницаема для различных веществ, ее проницаемость зависит от природы проникающих в клетку молекул и физиологических особенностей клетки. В цитоплазме находятся различные включения — капельки жира, зерна крахмала и т. д., вакуоли. В вакуолях содержится клеточный сок. В клеточный сок растений входят различные пигменты, определяющие окраску растений и их отдельных органов. Желтая окраска обусловлена флавонами, а красная и фиолетовая— антоцианинами. Окраска зависит также от кислотности сока. Главнейщими клеточными структурами, которые содержатся в цитоплазме, являются ядро, пластиды, митохондрии и микросомы. Пластиды—довольно крупные гранулы овальной формы, митохондрии — мелкие палочковидные частицы, а микросомы — мельчайшие округлые частицы. Митохондрии и микросомы хотя и значительно меньше ядра или пластид, но на их долю приходится до 50% массы протоплазмы. В протоплазме имеется сложная система мембран, образующих каналы, связанные с оболочкой ядра. Эта система представляет структурную основу клеточной цитоплазмы и называется эндоплаз-матической сетью. [c.28]

    С последующим воздействием ионизирующей радиации на бесцветный синтетический кварц были выращены кристаллы с дымчатой, аметистовой и радиационной цитриновой окраской. Как рассмотрено подробно в гл. 3, дымчатая окраска характеризуется широкой дихроичной полосой поглощения с максимумом 460 нм. Наблюдается также менее четко выраженный максимум в области 620 нм. Опытами по выращиванию кварца в особо чистых условиях, а также в условиях избыточной концентрации примеси алюминия были подтверждены данные электронного парамагнитного резонанса о примесной природе (А1 + + Ме +) центров дымчатой окраски металла, расположенных в структурном канале по соседству с германиевым тетраэдром. [c.180]


    Снижение давления не препятствует формированию аметистовых центров окраски, однако ромбоэдрические кристаллы в подобных условиях интенсивно растрескиваются из-за недостаточно эффективного предварительного гидротермального протравливания затравочных пластин н сохранения дефектного, аморфизиро-ванного слоя кварца. При прочих равных условиях использование затравок, параллельных г-грани, обеспечивает возможность массового производства однородных кристаллов аметиста с промышленно приемлемыми скоростями и необходимой интенсивностью и чистотой фиолетовой окраски. При этом следует создавать в гидротермальном растворе избыток трехвалентных ионов железа и снижать содержание примесных ионов алюминия, с которыми, как уже отмечалось, связаны дырочные центры дымчатой окраски. В облученном кристалле спектры поглощения от обоих типов центров накладываются один на другой, что, естественно, ухудшает чистоту аметистовой окраски. Поскольку коэффициент захвата структурной примеси алюминия находится в прямой зависимости от температуры выращивания, в то время как коэффициент поглощения примеси железа в исследованном температурном интервале существенно не зависит от температуры, предпринимались попытки получения аметистов без дымчатого оттенка окраски за счет температуры синтеза. Однако они не увенчались успехом из-за снижения скорости роста и растрескивания кристаллов на разных стадиях процесса. Задача была решена путем более тщательного подбора шихтового кварца с минимальным содержанием примеси алюминия, а также за счет специальной обработки выращенных кристаллов, устраняющей дымчатую составляющую окраски. [c.182]

    Дигидроксииндолин-2-карбоновая кислота 6.365, подвергаясь действию оксидаз, дает набор более глубоко окисленных веществ (некоторые из них приведены в нижней части схемы). Здесь же под номером 6.368 изображена молекула адренохрома, образующаяся при аналогичном окислении адреналина 6.7 (см. разд. 6.2). Бетаин 6.368, а также ортохиноны 6.366 и 6.367 содержат химически активные сопряженные двойные связи и нуклеофильные группы. За счет этих реакционных центров у животных они подвергаются полимеризации, образуя окрашенные высокомолекулярные вещества, называемые меланинами. Это происходит в специализированных клетках — меланоцитах. Цвет пигмента зависит от структурных особенностей и степени полимеризации и охватывает диапазон от желтого и красного до совершенно черного. Меланины обусловливают окраску кожи, глаз и волос человека, В коже они выполняют функцию защиты от ультрафиолетового облучения служат ловушкой свободных радикалов, рождающихся при действии высокочастотной составляющей солнечного света. Волосяные и перьевые покровы млекопитающих и птиц также окрашены меланинами. Меланиновую природу имеет и пигмент чернильной жидкости каракатицы, которую она извергает, чтобы скрыться от опасности. [c.514]

    Амилопектин и гликоген имеют большой молекулярный вес (приблизительно 10 для амилопектинов и 10 для гликогенов) [35] и обладают разветвленной древообразной структурой [55]. Последнее сказывается на длине углеродной цепи, а следовательно, на образовании спирали и включении молекул иода. 13нешние ответвления молекул длиннее внутренних, которые образуют сегменты цепи, лежащие между точками ответвлений. Длина внешних ответвлений в амилопектине колеблется от 14 до 17 глюкозных структурных единиц в зависимости от природного источника, а в более разветвленном гликогене [2, 55] — рт 4 до 11, и их средняя длина также зависит от происхождения гликогена. Длина внутренних ветвей колеблется от 5 до 8 глюкозных структурных единиц в амило-пектинах и от 2 до 7 — в гликогенах. Так как амилопектин и гликоген можно считать статистическими полимерами [27], то следует ожидать, что средняя длина ответвлений будет разной и некоторые ответвления в гликогене и амилопектине по длине превысят 18 глюкозных структурных единиц, что так необходимо для появления окраски в спиральных комплексах. [c.545]

    Важно уяснить, что получение хорошего красителя имеет не меньшее значение, чем создание красивой окраски. Для того чтобы краситель определенного цвета мог быть использован, например, в красильном производстве, должны существовать простые способы крашения волокна и (что, как правило, более важно и трудно) окраска должна быть достаточно стойкой в условиях обычной стирки и чистки (стойкость к линьке), а также не должна разрушаться при действии света (светостойкость). При этом вновь возникают проблемы первостепенной важности. Научный подход к повышению стойкости промышленных красителей к линьке должен основываться на знании структурных факторов, обусловливающих действие межмолекулярных сил, которыми определяется растворимость. Светостойкость непосредственно связана с важной областью — фотохи- [c.432]

    Соединения, имеющие структуру типа I или П, часто способны обратимо превращаться в семихиноны. Способные к мезомерии соли хинониммония, например зеленый Биндшедлера, можно рассматривать как N-аналоги полиметинов (см. разд. Г,7.2.11), что и обусловливает их глубокую окраску. Этот структурный элемент содержится также в катионных азокрасителях. (Хи-нониминные структуры обнаруживаются также в таутомерных формах азокрасителей см. разд. Г,8.3.3). [c.37]

    Краситель кармоазин представляет интерес как реагент на хром, вследствие специфичности действия на него хроматов, возможности определения микрограммовых количеств хрома и устойчивости образующейся окраски. Ценна также устойчивость как раствора кармоазина, так и сухого красителя и его дешевизна. Этот краситель выпускается отечественной анилинокрасочной промышленностью под названием кислотный хром красный 2С и имеет следующую структурную формулу  [c.162]

    Но вне зависимости от верности детальных количественных аспектов модели, в ходе рассмотрения выявилась одна структурная черта сверхвытянутых волокон фибриллярные кристаллические элементы конечной длины механически взаимодействуют с матрицей. Постулирование существования фибриллярных элементов, конечно, не ново. Но введение в модели элементов конечной длины с распределением по длинам, по-видимому, в рассматриваемой теории сделано впервые. В этом отношении важно сходство теоретических представлений с последними модельными разработками, касающимися образования фибрилл из предварительно [выстроенных цепей (тип I, см. стр. 243). В обоих случаях фибриллы представляются как дискретные структурные элементы. Их термическая стабильность (речь идет о микрофибриллах, а не о макроскопических сложных фибриллах) и их вид в электронном микроскопе (границы, определяемые окраской препарата) позволяют утверждать, что, несмотря на различное происхождение фибрилл, они вполне подобны друг другу. Ограниченная длина фибрилл, показываемая дифракционной картиной в продольном направлении, а также обратимость деформаций в циклах сокращения и растяжения при температурной обработке волокон I типа и конечная длина фибрилл, вытекающая из модельных представлений относительно структуры волокон И типа, позволяет рассматривать материалы обоих типов с общих позиций. [c.265]

    Вопросы о том, являются ли водные растворы прямых красителей для хлопка истинными или коллоидными растворами, обсуждался неоднократно. До последнего времени обычно думали, что прямые красители образуют коллоидные растворы, причем размер агрегатов данного красителя зависит от температуры и добавляемой соли считали, что молекулярно растворенные частицы, свободно диффундирующие через волокно, не принимают участия в процессе крашения до тех пор, пока не будут изменены условия (например, добавлением солей) для изменения степени агрегации. Робинсон исследовал структуру водных растворов прямых красителей для хлопка разными методами — измерением осмотического давления, диффузии, электропроводности и чисел переноса — и полностю подтвердил наличие агрегации. Можно с полным основанием предположить, что структурные факторы, содействующие прочной абсорбции молекулы красителя на целлюлозе, будут благоприятствовать также агрегации в водном растворе поэтому задача сводится к количественному определению степени агрегации данного красителя в условиях, в которых ведется процесс крашения. Доказательство агрегирования Небесно-голубого РР было получено путем измерения электропроводности. , Краситель образует голубые растворы в воде и в растворах катионных мыл при концентрациях, превышающих критические концентрации, необходимые для образования мицелл. При концентрациях ниже критических раствор имеет красноватый оттенок, и изменение окраски достаточно отчетливо для определения конца титрования раствора мыла, содержащего краситель, водным раствором красителя. Степень агрегации Небесно-голубого РР в отсутствие солей неизвестна. Валько принимает число агрегац1ш для 0,002—0,02%-ных растворов красителя в присутствии 0,02—0,05 молярных растворов хлористого натрия равным 3,7. Измерение равновесия седиментации указывает, что растворы Конго красного монодисперсны и что молекулярный вес красителя в 0,1 н. растворе [c.1441]

    К хлопку наблюдается также в щелочном растворе у лейкосоединений многих сернистых и антрахиноновых кубовых красителей, в том числе некоторых красителей, в молекулу которых не входят атомы азота и серы, и у ариламидов оксинафтойной кислоты. Ярко выраженное сродство в отношении целлюлозы проявляется у плоских полициклических молекул, например у молекул фталоцианинов и дибензантронов, которым растворимость придается введением в молекулу красителя сульфогрупп. Хотя у этих красителей окраска обусловлена анионом, но при соответствующем строении красителя целлюлоза способна абсорбировать также и окрашенные катионы. К таким красителям относятся основные азокрасители и фталоцианины с аммониевыми и сульфониевыми группами в молекуле, обладающие субстантивностью по отношению к целлюлозе. Окраска не является непременным свойством субстантивной молекулы и ряд бесцветных веществ, например полиамиды, активно адсорбируются целлюлозой. Однако многие структурные особенности, обусловливающие окраску вещества, благоприятствуют появлению субстантивности. Субстантивность в отношеиии целлюлозы была обнаружена у многих органических соединений различных типов. Приведенные примеры иллюстрируют различие структурных факторов, обусловливающих появление субстантивности и ненадежность слишком упрощенных объяснений накопленных экспериментальных данных. Ниже приводится более подробный разбор структурных особенностей красителей, обладающих субстантивностью. [c.1453]

    Взаимодействие электронодефицитных органических соединений с нуклеофилами приковывает внимание химиков уже с конца XIX века. Такое внимание частично объясняется появляющейся иногда в реакциях такого типа интенсивной окраской раствора, по которой можно определить степень и характер взаимодействия. Установлено, что некоторые виды взаимодействия зависят от структуры реагента и природы применяемого растворителя. Обычно взаимодействие состоит в переносе заряда от нуклеофила к ароматическому соединению, а его тип характеризуется степенью и способом такого переноса. При этом могут образоваться донорно-акцепторные (п) комплексы, в которых связь очень слаба и дело-кализована. Более сильное взаимодействие может наблюдаться в ковалентно связанных о-комплексах. Полный перенос электрона осуществляется в ион-радикалах. Все эти взаимодействия могут осложняться одновременным или последующим замещением в органическом соединении. Данный обзор посвящен взаимодействиям, приводящим к стабильным анионным о-комплексам, а также описанию структурных и химических характеристик этих комплексов. [c.422]

    Большая скорость расходования реакционноспособных групп в процессе термоотверждения, особенно на начальных стадиях процесса сушки, связана также с регенерацией реакционноспособных карбоксильных групп при электроосаждении на аноде в отличие от других методов, при которых это происходит в процессе сушки. В результате возрастает густота структурной сетки и уплотняется структура покрытий. В то же время электроосажденные покрытия обладают меньшими внутренними напряжениями. В результате образующиеся покрытия имеют лучшие физико-механические и защитные свойства, а также большую долговечность в сравнении с покрытиями, сформированными другими методами окраски (распылением, наливом). [c.53]

    При потере растворимости пленкообразователем в приэлектродном слое при оптимальных параметрах создаются условия для формирования покрытий, надмолекулярная структура которых равномерна и состоит из структурных элементов меньшего размера, чем при других методах окраски, основанных на испарении растворителя. В результате большее число реакционноспособных групп находится на поверхности образующихся в процессе формирования покрытий надмолекулярных структур, а следовательно, создаются лучшие, чем при традиционных методах окраски, условия для более полного их взаимодействия. В результате увеличивается густота структурной сетки и уплотняется структура покрытий. Наличие однородной мелкоглобулярной структуры способствует большей завершенности релаксационных процессов в покрытии до начала термоотверждения. В результате образующиеся при электроосаждении покрытия находятся в менее напряженном состоянии, обладают лучшими физико-механическими и зацщтными свойствами, а также большей долговечностью в сравнении с покрытиями, сформированными методами окраски, основанными на испарении растворителей (распыление, налив). Этого улучшения свойств, однако, можно достичь лишь тогда, когда формирование покрытий осуществляется при оптимальных технологических параметрах. [c.81]


Смотреть страницы где упоминается термин также Структурная окраска: [c.7]    [c.32]    [c.226]    [c.226]    [c.285]    [c.184]    [c.184]    [c.192]    [c.710]    [c.711]    [c.215]    [c.566]    [c.203]    [c.101]    [c.119]    [c.110]    [c.222]    [c.178]   
Биохимия природных пигментов (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Окраска



© 2024 chem21.info Реклама на сайте