Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический нормальные значения

    Буферные растворы играют жизненно важную роль, поддерживая приблизительно постоянное значение pH во многих химических реакциях, которые протекают в биологических и других системах. В приведенной выше таблице указаны нормальные значения pH длй некоторых из таких систем, [c.275]

    Третий закон термодинамики позволяет вычислять так называемые абсолютные значения энтропии для любого вещества в любом агрегатном состоянии, если известны экспериментальные значения теплоемкостей от О К до данной температуры, а также теплоты фазовых переходов (см. 71). Данным путем могут быть вычислены значения энтропии S°(298) веществ при стандартных условиях (нормальном атмосферном давлении и температуре 298,15 К). Другой путь определения стандартных энтропий основан на использовании спектроскопических данных о строении вещества. Значения S°(298) широко используются при вычислении изменения стандартной энергии Гиббса и стандартной константы химического равновесия. Утверждение, что 5(0) = О, нельзя распространять на твердые растворы. Для них при О К появляется остаточная (нулевая) энтропия. В частности, для одного моля твердого раствора, если допустить, что он является идеальным вплоть до абсолютного нуля, и если для каждого /-го компонента 5(0) i = О, то при О К согласно уравнению (71.32) остаточная энтропия будет равна [c.265]


    Под материально-техническим снабжением предприятия понимается процесс обеспечения его всеми видами материально-технических ресурсов в требуемые сроки и в объемах, необходимых для нормального осуществления его производственно-хозяйственной деятельности. От организации снабжения, своевременности поступления материальных ресурсов в производство в необходимом ассортименте, количестве и должного качества в большой мере зависят равномерный, ритмичный выпуск готовой продукции, ее качество и эффективность деятельности коллектива предприятия. Поэтому основной задачей предприятий по организации и управлению материально-техническим снабжением является своевременное, бесперебойное и комплектное снабжение производства всеми необходимыми материальными ресурсами для осуществления производственного процесса в точном соответствии с утвержденными плановыми заданиями. При этом сам процесс снабжения должен осуществляться при минимальных транспортно-складских расходах и наилучшем использовании материальных ресурсов в производстве. Последнее для материалоемкой химической промышленности, в которой затраты на сырье и материалы составляют в среднем 56—70% в себестоимости продукции, имеет особо большое значение. [c.218]

    Весьма важное значение имеют жидкие компоненты природного газа, большие количества которых получаются из так называемых жирных газов в виде сжиженных газов и газового бензина. Сжиженные газы (пропан и бутан) и газовый бензин (пентан, гексан и гептан) после физической стабилизации являются важным сырьем для химической промышленности. Под термином сжиженные газы подразумевают смеси пропана и бутана, пропилена и бутиленов. Эта смесь углеводородов сжижается при нормальной температуре под давлением до 20 ат. [c.20]

    Выше уже говорилось о том, как влияет напряжение в циклоалканах с небольшими кольцами на теплоты сгорания. Вполне вероятно, что другие химические свойства также будут изменяться под влиянием углового напряжения. И действительно, циклопропан и циклобутан значительно более реакционноспособны, чем углеводороды с открытой цепью. Так, они вступают в некоторые реакции, характерные для соединений с углерод-углерод-ной двойной связью, причем их реакционная способность зависит от степени углового напряжения и чувствительности атакующего агента к прочности связи С — С. Результатом таких реакций всегда оказывается раскрытие цикла путем разрыва связи С — Си образования соединения с открытой цепью, в котором углы между связями имеют нормальное значение. [c.111]


    Нет никакого количественного правила для предугадывания точек плавления чистых углеводородов однако качественно это можно сделать точка плавления имеет тенденцию к увеличению вместе с ростом молекулярного веса и с увеличением симметрии молекулы. Точки плавления нормальных парафинов представлены в табл. 111-7. Эти значения хорошо согласуются с данными для низших кристаллических парафинов, когда вещества сравниваются на основе молекулярного веса этот факт является лучшим доказательством химического строения макрокристаллических нефтяных парафинов. Влияние симметрии намного превосходит влияние молекулярного веса. Если добавить боковые цепи к нормальным парафинам, то разветвленные парафины обычно кипят намного ниже, чем нормальные парафины с самой длинной цепью в молекуле. Встречаются, однако, исключения, когда замещение ведет к образованию компактной очень симметричной молекулы например, 2,2-диметилпропан плавится при —20° С, в то время как и-пентан плавится при —130° С, и 2,2,3,3-тетраметил бутан плавится при 104° С, а п-октан плавится при —57° С. Подобные количественные правила применимы и для циклических соединений. [c.192]

    С точки зрения электрохимии деминерализация сыворотки имеет несколько специфических особенностей, которые не встречаются в других процессах деминерализации (например, преимущественный перенос одновалентных ионов по сравнению с переносом многовалентных ионов, смещение pH, которое вызывает денатурирование протеинов, диализный перенос вещества, а также оптимальная проводимость ячейки). Эти особенности объясняются физико-химической природой сыворотки, буферным и хелатным влиянием органических веществ, присутствующих в растворе. Вследствие относительно высокой вязкости сыворотки и присутствия органических веществ, способных связывать простые ионы в комплексные соединения, ионная подвижность и диффузия электролитов в сыворотке отличаются от подвижности и диффузии электролитов в более простых растворах. Эти отличия обычно усугубляются, если концентрация твердых веществ в обрабатываемой сыворотке выше ее нормального значения, равного 6%. [c.71]

    Из табл. 4 видно, что это влияние очень велико. Температура стенки в течение периода коксования так же, как и температура подсводового пространства, не остается постоянной. При загрузке холодной шихты она значительно снижается и достигает своего нормального значения только на 7—8 часу периода коксования. Поэтому и состав химических продуктов, выделяющихся из коксовой камеры, непостоянен. [c.19]

    Кроме того, термин стандартные применяется (в иных смыслах) еще в трех случаях стандартные состояния (см. П1.18), стандартные значения термодинамических функций (см. HI. 18), стандартные (нормальные) значения свободной энергии (см. П1.24) в уравнении изотермы химической реакции. [c.230]

    Этот процесс может формально рассматриваться как химическая реакция, хотя он не сопровождается разрывом химических связей в молекулах или образованием новых химических связей. Представим себе, что показанный на рис. 4-2 цилиндр вместо СаСОз и СаО наполовину заполнен водой и что вначале поршень приведен в соприкосновение с поверхностью воды. Если поднять поршень на некоторую высоту, жидкость в цилиндре будет испаряться, но только до тех пор, пока давление паров воды не достигнет постоянного значения, зависящего только от температуры. Оно называется равновесным давлением насыщенных паров воды при данной температуре. При 25 С давление насыщенных паров воды равно 0,0313 атм. При 100°С давление насыщенных паров воды достигает 1 атм, и, как мы узнаем из гл. 18, этим и определяется нормальная температура кипения воды. Давление водяных паров над поверхностью жидкой воды в цилиндре не зависит от толщины слоя воды в нем единственным условием существования насыщенных паров (т.е. равновесия в системе жидкая вода-пары воды) является наличие любого количества воды, способного испаряться, чтобы [c.186]

    Весьма вероятно, что этот вывод имеет довольно общий характер. Если скорость диффузии, не полностью лимитирующей процесс, близка к скорости химической стадии, то значение энергии активации может быть точным, несмотря на искаженную кинетическую картину. Это утверждение подтверждается и результатами исследования (рис. 1.2) каталитического гидрирования этилена и пропилена в удлиненном реакторе. При высоких температурах диффузия полностью лимитирует скорость процесса и энергия активации невелика. Однако нельзя считать, что диффузия не оказывает никакого влияния при несколько более низких температурах в области нормального значения энергии активации. На этом примере, где переход виден достаточно отчетливо, довольно естественным кажется сомнение в пригодности данных, полученных в некоторой экспериментальной области. По-видимому, точно так же нужно относиться и к другим случаям. [c.167]

Рис. 4.5. Пространственное распределение неравновесного химического потенциала и сверхтекучего импульса в моменты времени обращения сверхпроводящего тока в нормальное значение (1 - минимальное значение) , Рис. 4.5. <a href="/info/135221">Пространственное распределение</a> <a href="/info/578115">неравновесного химического</a> потенциала и сверхтекучего импульса в моменты времени обращения сверхпроводящего тока в нормальное значение (1 - минимальное значение) ,

    Хотя в этой модели вводится энтропия активации, что позволяет учитывать структурные изменения, однако она имеет дело с переходным комплексом, свойства которого не могут быть изучены и проверены независимо от кинетических данных. Так, например, V является здесь средней частотой для переходного состояния и, хотя возможно, что она имеет то же значение, что и V для нормальной молекулы, тем не менее такая эквивалентность только постулируется. Достоинством этой модели является то, что она дает представления о свойствах переходного комплекса и намечает путь, по которому такое представление может привести к установлению связи между молекулярной структурой и химической реакционноспособностью. На практике Н+ можно отождествить с экспериментальной энергией активации, но разделить экспериментально частотный фактор между V и 8= " невоз- [c.225]

    Это обстоятельство пе всегда еще учитывается при решении вопросов о выработке парафинов, предназначенных для тех или иных специальных целей, для которых имеет значение их химический состав. В таких случаях для парафина необходимо нормировать пределы температур не только плавления, но и кипения, имея при этом в виду, что чем выше при заданном фракционном составе нефтяного парафина будет его температура плавления, тем больше будет содержаться в этом парафине алканов нормального строения. [c.58]

    Сумма ожижепного газа и газового бензина составляет жидкую часть природного газа. Газовый бензин имеет большое значение для химической переработки парафинов, так как из него получают технический пентан — примерно эквимолекулярную смесь к-пентана и изопентана, из которых к-пентап необходим для получения амилового спирта, изопентан — в синтезе изопрена. В последнее время все большую роль играет также выделение этана из природного газа, так как этан представляет собой важный исходный материал для получения этилена и ацетилена. Этан не относится к сжижаемым при нормальных условиях составным частям газа и для его Ч выделения необходимы специальные методы.  [c.13]

    Физические и физико-химические свойства нафтеновых углеводородов близки к свойствам углеводородов парафинового ряда как нормального, так и изостроения, что обусловлено наличием в молекулах нафтенов боковых цепей разных длины, структуры и степени разветвленности. Нафтеновые углеводороды отличаются от парафиновых, выкипающих в тех же пределах, большими плот-нос тью, вязкостью, показателем преломления, меньшей температурой плавления и худшей вязкостно-температурной характеристикой. Нафтеновые и парафиновые углеводороды имеют практически одинаковые значения удельной дисперсии и молекулярной [c.13]

    В связи с расширением областей применения парафинов, церезинов и разработкой на их основе восковых композиций большое значение приобретают физико-механические свойства этих продуктов, такие как твердость, прочность, пластичность, адгезия, усадка и др. Прочностные и пластичные свойства твердых углеводородов могут быть оценены по остаточному напряжению сдвига, температуре хрупкости и показателю пластичности. Результаты работ [16, 22] показали, что физико-механические свойства твердых углеводородов обусловлены их химическим составом, структурой молекул отдельных групп компонентов и связанной с ней плотностью упаковки кристаллов твердых углеводородов, а также фазовым состоянием вещества. Сопоставление физико-механических свойств со структурой твердых углеводородов проведено [16] на молекулярном уровне с использованием температурных зависимостей показателей преломления и ИК-спектров в области 700—1700 см-. На рис. 33 и 34 приведены результаты исследования грозненского парафина, состоящего из парафиновых углеводородов нормального строения, и углеводородов церезина 80 , не образующих комплекс с карбамидом и содержащих разветвленные и циклические структуры. [c.126]

    Бериллий. Из рис. 1.34 видно, что атом бериллия в нормальном состоянии не имеет неспаренных электронов, поэтому егс валентность равна нулю. Однако сообщение атому бериллия некоторого количества энергии (260 кДж/моль) переводит его в возбужденное состояние, в котором имеется два неспаренных электрона, т. е, атом бериллия проявляет валентность, равную двум. Затраты энергии, необходимой для перевода атома в возбужденное состоя- ние, с избытком компенсируются энергией, выделяющейся при образовании химической связи (вспомним, что энергия одинарной связи имеет значение порядка 400 кДж). [c.82]

    Операторная схема ХТС представлена на рис. 5.1. Неопределенными параметрами ХТП для рассматриваемой синтезируемой ХТС являются значения констант скоростей химических реакций, которые имеют нормальный закон распределения при известных математических ожиданиях и дисперсиях. [c.137]

    В настоящее время парафиновые углеводороды с прямой цепью выделяют из нефти и ее фракций при помощи мочевины. Как наблюдал впервые в Германии Ф. Бенген [10], мочевина (карбамид) дает с к-парафинами кристаллические аддукты, в то время как разветвленные парафиновые углеводороды, а также нафтеновые и ароматические этой способностью не обладают. Эти аддукты могут быть отделены от жидкой фазы фильтрованием или центрифугированием, промыты подходящим растворителем, а затем разрушены горячей водой. В результате отделяется маслообразная смесь парафиновых углеводородов нормального строения. Так как аддукты образуются только с нормальными парафинами, а изопарафины, имеющие в общем меньшее значение для дальнейшей химической переработки, одновременно отделяются, то этот новый способ с точки зрения химической переработки содержащихся в нефтях парафинов приобретает еще большее значение. [c.20]

    Основными количественными характеристиками ФХС данного уровня иерархии являются нормальные и касательные напряжения, значения деформаций и скоростей деформаций, коэффициенты вязкости, диффузии, теплопроводности, скорости химических реакций и фазовых превращений и т. п. [c.31]

    Реакционная способность химической системы при заданных условиях характеризуется скоростью и возможной глубиной химической реакции. Направление и глубина химической реакции определяются законами химической термодинамики. Согласно второму закону термодинамики условия направленности и равновесия химических реакций при постоянных Я и Г записываются в форме О (см. гл. X). В качестве меры химического сродства реакции принимается значение нормального (стандартного) сродства Afi° 298) (см. 75). Нормальное сродство мэжет быть меньше и больше нуля. Термодинамически наиболее вероятны реакции, у которых значения нормального сродства наиболее отрицательны. По значению (298) можно судить о вероятности той или иной реакции при парциальных давлениях (активностях) исходных и конечных продуктов, равных единице. Однако не следует делать вывод, что реакция вообще неосуществима, если А ° Т) > 0. Изменив парциальные давления начальных или конечных продуктов, можно создать условия, когда А О(Т) будет меньше нуля, и реакция пойдет слева направо. В табл. 28 привета б л и ц а 28. Степень превращения исходных веществ (х) и (2Я8) процесса, протекающего до равновесного состояния при отсутствии продуктов реакции в исходной системе [c.522]

    Сагден рассмотрел кинетическую схему реакций, которая приводит к определяюшему влиянию одного из процессов [22]. Он показал, что, вероятно, каждая из реакций в пределах достигаемого временного разрешения обеспечивает равновесие между металлом и гидроксилом наблюдаемая величина ф не отстает от локальной концентрации радикала. При низкой энергии диссоциации связи М—ОН это равновесие достигается в первой реакции, в противном случае — во второй. Если константы скоростей обеих реакций имеют нормальные значения, то следует ожидать, что первая обладает небольшой или нулевой энергией активации, но, являясь тримолекулярным процессом, должна иметь эффективность порядка 10 ". Поскольку эта величина содержит число столкновений с второстепенным компонентом ОН, ее нужно уменьшить на порядок [3]. Таким образом, за 10 столкновений атома металла будет происходить один элементарный химический акт. Эффективность второй реакции равна единице, но она происходит с участием основного компонента, концентрация которого обычно около Ю атм. Энергия активации такой реакции по крайней мере не меньше теплоты реакции, поэтому вторая реакция будет медленней первой, если больцмановский множитель не больше 10" . При температуре 1800 К этой величине соответствует энергия активации 210 кДж/моль. Теплота реакции представляет собой разность энергий связей М—ОН и Н—ОН. Принимая последнюю равной 515 кДж/моль при 1800 К, можно увидеть, что тримолекулярные процессы будут быстрее, если только энергия связи М—ОН не больше 300 кДж/моль. [c.218]

    УФ-спектры винилфосфоновых кислот и винилфосфонатов, однако, очень похожи на спектры соответствующих олефинов [89], и молекулярные рефракции этих соединений отвечают нормальным значениям. Эти факты свидетельствуют о полном отсутствии оптической экзальтации, а следовательно, и сопряжения . Такой вывод отличается от полученного на основании химических наблюдений, поскольку винилфосфонаты и подобные соединения претерпевают быстрое нуклеофильное присоединение по двойной связи [89]. [c.98]

    При постоянном уровне раствора учет гидравлической депрессии обеспечивается тем, что окончательную градуировку концентрато-мера производят по месту (химическим анализом проб раствора) при нормальном значении уровня. [c.199]

    Интересное предположение о возможных причинах, обусловливающих особенности протекания химических реакций в твердых органических телах, например в твердых полимерах, высказано авторами работы [500]. Характерной особенностью кинетики подобных реакций является то, что определяемые энергии активации и предэкспоненциальные множители для реакции в твердых полимерах существенно больше нормальных значений для тех же процессов в жидкой и газовой фазах. Часто между этими величинами существует линейная зависимость nko=A+BE (где k0 —. горедэкс-понент Е — энергия активации А и В — коэффициенты). Подобное соотношение между ka и Е принято называть компенсационным эффектом. По. мнению авторов работы [500], явление компенсационного эффекта наиболее логично и последовательно объясняется на основе формально-кинетических представлений, развитых в работе [501]. В том случае если в силу каких-то причин истинная [c.158]

    На более же мощном котле горелки типа Бабкок-ТКЗ с центральной подачей газа обеспечивали сравнительно полцое сжигание газа [2]. Котел типа ТП-230 В = 230 т/ч, Р = 100 ати, /= 510°С), оборудованный горелками такого типа (по 3 горелки на каждой боковой стороне) при отоплении газом в нормальном диацазоце нагрузок и при нормальных значениях коэффициента расхода воздуха, работал устойчиво, без выделения сажи и со сравнительно малым химическим недожогом (табл. 14-6), и при снижении коэффициента расхода воздуха до 1,10 химический недожог не превышал 1%). [c.379]

    Превращения различных циклопарафинов и относительная прочность колец — это различные стороны одной и той же проблемы строения и взаимного влияния заместителей па физические и химические свойства кольчатой системы. В так называемой теории напряжения (Spannugtheorie) Байера (1885), являющейся логическим развитием идеи о тетраэдрическом строении углеродного атома, делалась попытка механистического объяснения относительной прочности колец [110]. Согласно этой теории различная прочность кольчатых и непредельных систем обусловливается отклонением от своего нормального значения (=109° 28 ) угла между валентными силами углеродного атома, причем непрочность системы пропорциональна величине отклонения. Если для трех первых циклопарафинов байеровские взгляды достаточно удовлетворительно, хотя и качественно, согласуются с фактами, то начиная с циклогексана, наблюдаются резкие расхождения свойств циклоалканов спредсказаниями теории напряжения. Это расхождение привело к дополнительным соображениям о нахождении углеродных атомов циклогексана и высших циклов в различных плоскостях (Заксе [c.120]

    Большое значение для последующей химической переработки имеет то обстоятельство, что продукты синтеза Фишера—Тронша имеют преимущественно нормальное строение. На колонках четкой ректификации из них можно выделить индивидуальные компоненты. Содержание олефинов уменьщается по мере увеличения молекулярного веса. Содержание олефинов в продуктах синтеза над кобальтовым катализатором под нормальным давлением приведено в табл, 31. [c.104]

    До последнего времени нормальный пропиловый Спирт не получил широкого распространения. Это вызвано отсутствием специфических областей применения и относительно высокой стоимостью производства м-пропанола. Тем не менее в настоящее время возникла необходимость организации крупнотоннажного промышленного производства и-пронанола для нужд различных отраслей химической промышленности. В непосредственной связи с проблемой производства и применения и-пропанола находится проблема производства пропионового альдегида, значение которого в промышленности органического синтеза заметно возросло. В годы второй мировой войны значительная часть и-пронанола, получаемого на установках синтеза спиртов из окиси углерода и водорода, перерабатывалась в пропионовый альдегид. Последний направлялся на синтез триметилолэтана (метриола) — трехатомного спирта, заменяющего глицерин. [c.51]

    Молекулярный объем определяется как молекулярный вес, деленный на плотность он пропорционален объему, занятому одной молекулой веществ. Допуская облагораживающую природу для атомных превращений, различные исследователи предложили формулу для вычисления молекулярного веса чистых углеводородов. Эти соотношения очень стары, но были распространены еще недавно (Конп, 1842) [125—126]. Просто говоря, нормальные парафины обладают самыми большими молекулярными объемами. Разветвление углеродной цени уменьшало значение очень незначительно, двойные связи заметно, а кольцо — до количества, почти эквивалентного трем двойным связям. Молекулярный объем удобен при установлении зависимостей между химическим составом и физическими свойствами. Эта идея не нова, но вновь за последнее время к ней был проявлен интерес. [c.182]

    Одним из неполярных адсорбентов, применяемых при разделении компонентов масляных фракций с целью исследования их структуры, является а1ктивированный уголь. В настоящее время выпускается несколько марок активированных углей, однако для промышленных установок и при исследовании химического состава масляных фракций нефти наибольшее распространение получил активированный уголь маржи БАУ. Этот уголь получают из древесного березового или букового угля-сырца, обрабатывая его водяным паром при высокой температуре. Еще в 40-х годах И. Л. Гуревичем была обнаружена опособность активированного угля адсорбировать парафиновые углеводоро ды нормального строения. Обзор литературного материала, посвященного адсорбционной способности активированного угля [3—б], позволяет сделать заключение о том, что на активированном угле углеводороды разделяются не по гомологическим рядам, а по структуре молекул, причем решающее значение имеет длина >и структура парафиновых цепей. Поверхность активиро ванного угля как нелоляр- [c.260]

    Блок расчета физико-химических свойств технологических потоков ХТС в СПЦМ должен автоматически определять параметры свойств всех технологических потоков ХТС на основе минимального объема входной информации. Например, при заданных значениях молекулярной массы, температуры кипения при нормальных условиях и плотности в блоке должны определяться энтальпия, давление паров или параметры физических свойств химических соединений и смесей на основе теоретических и экспериментальных данных по различным регрессионным уравнениям. Эти регрессионные уравнения также должны обеспечивать определение зависимых параметров физико-химических свойств потоков (теплоемкость, плотность и вязкость) как функции независимых параметров состояния потоков— массовый расход, покомпонентный состав, температура и давление. [c.63]


Смотреть страницы где упоминается термин Химический нормальные значения: [c.280]    [c.181]    [c.118]    [c.206]    [c.206]    [c.160]    [c.179]    [c.474]    [c.157]    [c.241]    [c.298]    [c.338]    [c.296]    [c.93]    [c.316]    [c.70]   
Кинетика реакций в жидкой фазе (1973) -- [ c.297 , c.298 ]




ПОИСК







© 2025 chem21.info Реклама на сайте